The complete mitochondrial genome of a pyraloid species, Palpita hypohomalia, was sequenced and analyzed. This mitochondrial genome is circular, 15,280 bp long, and includes 37 typical metazoan mitochondrial genes (13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes) and an A + T-rich region. Nucleotide composition is highly biased toward A + T nucleotides (81.6%). All 13 protein-coding genes (PCGs) initiate with the canonical start codon ATN, except for cox1 which is CGA. The typical stop codon TAA occurs in most PCGs, while nad2 and cox2 show TAG and an incomplete termination codon T, respectively. All tRNAs have a typical clover-leaf structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm. Comparative mitochondrial genome analysis showed that the motif "ATGATAA" between atp8 and atp6, and the motif "ATACTAA" between trnS2 and nad1 were commonly present in lepidopteran mitogenomes. Furthermore, the "ATAG" and subsequent poly-T structure, and the A-rich 3' end were conserved in the A + T-rich regions of lepidopteran mitogenomes. Phylogenetic analyses based on our dataset of 37 mitochondrial genes yielded identical topology for the Pyraloidea, and is generally identical with that recovered by a previous study based on multiple nuclear genes. In a previous study of the Crambidae, the Evergestinae was synonymized with Glaphyriinae; the present study is the first to clarify their close relationship with mitogenome data.
The mitochondrial genome of Saccharosydne procerus (Matsumura) is the first sequenced in the tribe Saccharosydnini (Hemiptera: Delphacidae: Delphacinae). In addition, the mitogenome sequence of Sogatella vibix (Haupt) (in Delphacini) is also sequenced. The Sa. procerus mitochondrial genome is 16,031 bp (GenBank accession no. MG515237) in length, and So. vibix is 16,554 bp (GenBank accession no. MG515238). The existence of purifying selection was indicated by the rate of nonsynonymous and synonymous substitutions. Three species of Delphacini, Laodelphax striatellus (Fallén), Sogatella furcifera (Horváth) and Nilaparvata lugens (Stål), are important pests of rice. The phylogeny of these three rice planthoppers based on the mitochondrial genome sequence was (L. striatellus + (So. vibix + So. furcifera)) + (N. muiri + N. lugens)., Yi-Xin Huang, Dao-Zheng Qin., and Obsahuje bibliografii
Morphological characteristics of the acanthocephalan Polymorphus minutus (Goeze, 1782), which was collected from the duck Anas platyrhynchos Linnaeus in the Czech Republic, are described. The mitochondrial (mt) genome of P. minutus was sequenced, with a total length of 14,149 bp, comprising 36 genes including 12 protein coding genes (PCGs), 22 transfer RNA (tRNA) genes and two ribosomal RNA genes (rrnL and rrnS). This genome is similar to the mt genomes of other syndermatan species. All these genes were encoded on the same DNA strand and in the same orientation. The overall nucleotide composition of the P. minutus mt genome was 38.2% T, 27.3% G, 26.2% A, and 8.3% C. The amino acid sequences of 12 PCGs for mt genomes of 28 platyzoans, including P. minutus, were used for phylogenetic analysis, and the resulting topology recovers P. minutus as sister to Southwellina hispida (Van Cleave, 1925), and the two taxa form a sister clade to Centrorhynchus aluconis (Müller, 1780) and Plagiorhynchus transversus (Rudolphi, 1819), which are all species in the Palaeacanthocephala, thus supporting the monophyly of this class.
Aging is a process drawing attention of many researchers, and at present many theories exists, which try to explain this chain of inevitable events leading to death of organism. In this article we focused our attention on a theory explaining the degenerative changes occurring during aging by the effect of oxygen free radicals. These highly reactive radicals are produced during oxidative phosphorylation in mitochondria. All cellular components appear to be sensitive to oxygen-radical damage. Lipids, proteins and nucleic acids are probably the most susceptible to this injury. Lipoperoxidation of lipids together with cross-linking of proteins with phospholipids and nucleic acids caused changes in membrane fluidity. Mitochondrial DNA coding several subunits of respiratory chain enzymes can be also damaged by these radicals. All these changes together have negative impact on mitochondrial metabolism resulting progressive decrease of the efficiency of oxidative phosphorylation and thus of the whole organism.