dc.contributor.author | Rosa, Rudolf |
dc.contributor.author | Zeman, Daniel |
dc.contributor.author | Mareček, David |
dc.contributor.author | Žabokrtský, Zdeněk |
dc.date.accessioned | 2017-03-24T16:01:36Z |
dc.date.available | 2017-03-24T16:01:36Z |
dc.date.issued | 2017-01-28 |
dc.identifier.uri | http://hdl.handle.net/11234/1-1971 |
dc.description | Trained models for UDPipe used to produce our final submission to the Vardial 2017 CLP shared task (https://bitbucket.org/hy-crossNLP/vardial2017). The SK model was trained on CS data, the HR model on SL data, and the SV model on a concatenation of DA and NO data. The scripts and commands used to create the models are part of separate submission (http://hdl.handle.net/11234/1-1970). The models were trained with UDPipe version 3e65d69 from 3rd Jan 2017, obtained from https://github.com/ufal/udpipe -- their functionality with newer or older versions of UDPipe is not guaranteed. We list here the Bash command sequences that can be used to reproduce our results submitted to VarDial 2017. The input files must be in CoNLLU format. The models only use the form, UPOS, and Universal Features fields (SK only uses the form). You must have UDPipe installed. The feats2FEAT.py script, which prunes the universal features, is bundled with this submission. SK -- tag and parse with the model: udpipe --tag --parse sk-translex.v2.norm.feats07.w2v.trainonpred.udpipe sk-ud-predPoS-test.conllu A slightly better after-deadline model (sk-translex.v2.norm.Case-feats07.w2v.trainonpred.udpipe), which we mention in the accompanying paper, is also included. It is applied in the same way (udpipe --tag --parse sk-translex.v2.norm.Case-feats07.w2v.trainonpred.udpipe sk-ud-predPoS-test.conllu). HR -- prune the Features to keep only Case and parse with the model: python3 feats2FEAT.py Case < hr-ud-predPoS-test.conllu | udpipe --parse hr-translex.v2.norm.Case.w2v.trainonpred.udpipe NO -- put the UPOS annotation aside, tag Features with the model, merge with the left-aside UPOS annotation, and parse with the model (this hassle is because UDPipe cannot be told to keep UPOS and only change Features): cut -f1-4 no-ud-predPoS-test.conllu > tmp udpipe --tag no-translex.v2.norm.tgttagupos.srctagfeats.Case.w2v.udpipe no-ud-predPoS-test.conllu | cut -f5- | paste tmp - | sed 's/^\t$//' | udpipe --parse no-translex.v2.norm.tgttagupos.srctagfeats.Case.w2v.udpipe |
dc.language.iso | slk |
dc.language.iso | hrv |
dc.language.iso | nor |
dc.publisher | Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics (UFAL) |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/644402 |
dc.relation.isreferencedby | http://web.science.mq.edu.au/~smalmasi/vardial4/pdf/VarDial26.pdf |
dc.rights | Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.subject | parsing |
dc.subject | dependency parser |
dc.subject | cross-lingual parsing |
dc.subject | universal dependencies |
dc.title | Slavic Forest, Norwegian Wood (models) |
dc.type | toolService |
metashare.ResourceInfo#ResourceComponentType#ToolServiceInfo.languageDependent | true |
metashare.ResourceInfo#ContentInfo.detailedType | other |
dc.rights.label | PUB |
has.files | yes |
branding | LINDAT / CLARIAH-CZ |
contact.person | Rudolf Rosa rosa@ufal.mff.cuni.cz Charles University, UFAL |
sponsor | European Union EC/H2020/644402 HimL - Health in my Language euFunds info:eu-repo/grantAgreement/EC/H2020/644402 |
sponsor | Univerzita Karlova (mimo GAUK) SVV 260 333 Specifický vysokoškolský výzkum nationalFunds |
sponsor | Grantová agentura České republiky 15-10472S Morphologically and Syntactically Annotated Corpora of Many Languages nationalFunds |
sponsor | Ministerstvo školství, mládeže a tělovýchovy České republiky LM2015071 LINDAT/CLARIN: Institut pro analýzu, zpracování a distribuci lingvistických dat nationalFunds |
sponsor | Grantová agentura Univerzity Karlovy v Praze GAUK 15723/2014 Modelování závislostní syntaxe napříč jazyky nationalFunds |
files.size | 211839718 |
files.count | 5 |
Files in this item
Download all files in item (202.03 MB)This item is
Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Publicly Available
and licensed under:Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
- Name
- feats2FEAT.py
- Size
- 412 bytes
- Format
- Unknown
- Description
- Features pruning script
- MD5
- 5089de1e63c1aa36cf284bb85600365c
- Name
- no-translex.v2.norm.tgttagupos.srctagfeats.Case.w2v.udpipe
- Size
- 28.54 MB
- Format
- Unknown
- Description
- Model for parsing Norwegian (and tagging Norwegian Case)
- MD5
- af624d0dcde21068f51da7c2a4511780
- Name
- hr-translex.v2.norm.Case.w2v.trainonpred.udpipe
- Size
- 50.82 MB
- Format
- Unknown
- Description
- Model for parsing Croatian
- MD5
- 9281c6a9cf0cf1df0e7466bc1d8ba2fa
- Name
- sk-translex.v2.norm.feats07.w2v.trainonpred.udpipe
- Size
- 58.83 MB
- Format
- Unknown
- Description
- Model for tagging and parsing Slovak
- MD5
- 1d3793c42d2a75e14074dbbef8fdc5bf
- Name
- sk-translex.v2.norm.Case-feats07.w2v.trainonpred.udpipe
- Size
- 63.83 MB
- Format
- Unknown
- Description
- Better after-deadline model for tagging and parsing Slovak
- MD5
- e3b6101b345e6ffe361ac0c83ccc41fd