The effects of enhanced ultraviolet-B (UV-B, 0.4 W m-2) irradiance and nickel (Ni, 0.01, 0.10 and 1.00 mM; Ni0.01, Ni0.10, Ni1.00, respectively) treatment, singly and in combination, on growth, photosynthetic electron transport activity, the contents of reactive oxygen species (ROS), antioxidants, lipid peroxidation, and membrane leakage in soybean seedlings were evaluated. Ni0.10 and Ni1.00 and UV-B declined the growth and chlorophyll content, which were further reduced following combined exposure. Contrary to this, Ni0.01 stimulated growth, however, the effect together with UV-B was inhibitory. Carotenoids showed varied response to both the stresses. Simultaneous exposure of UV-B and Ni as well as UV-B alone reduced the activities of photosystems 1 and 2 (PS1 and PS2) and whole chain activity significantly, while Ni individually, besides strongly inhibiting PS2 and whole chain activity, stimulated the PS1 activity. Both the stresses, alone and together, enhanced the contents of superoxide radical (O2⋅-), hydrogen peroxide (H2O2), malondialdehyde (MDA), electrolyte leakage, and proline content, while ascorbate content declined over control. Individual treatments increased the activities of catalase (CAT), peroxidase, and superoxide dismutase (SOD), but Ni1.00 declined SOD activity significantly. Combined exposure exhibited similar response, however, CAT activity declined even more than in control. Compared to individual effects of UV-B and Ni, the simultaneous exposure resulted in strong inhibition of photosynthetic electron transport and excessive accumulation of ROS, thereby causing severe damage to soybean seedlings. and S. M. Prasad, R. Dwivedi, M. Zeeshan.
The spatial and temporal patterns of surface water (SW) - groundwater (GW) exchange are significantly affected by riverbed silting, clogging or erosion processes, by altering the thickness and hydraulic conductivity of riverbed sediments. The duration of SW-GW exchange is controlled by the drainage and infiltration resistance of river bottom sediments (e.g. Andrássy et al., 2012). Generally, these two parameters primarily depend on the hydraulic conductivity and on the thickness of clogged layer. In this study the flow processes between GW and SW were modeled by model TRIWACO for different infiltration resistance and drainage resistance of riverbed sediments. The model area is situated on the Rye Island, which is a lowland area with very low slope. In this area a channel network was built up, where the flow conditions are controlled by water-gates. Because of the low slope and the system of water gates built on the channels, the riverbeds are influenced by intensive clogging processes. First, the applicability of model TRIWACO in the study area was tested by modelling the response of GW on SW level fluctuation. It was simulated, how the regulation of water level and flow direction in the channels influence the GW level, especially in extreme hydrological conditions (drought/flood), and if the GW flow direction and GW level change as it was expected. Next, the influence of channel network silting up on GW-SW interaction was modeled. The thickness of riverbed sediments was measured and their hydraulic conductivity from disturbed sediment samples was evaluated. The assessed hydraulic conductivity was used to calculate the infiltration resistance and the drainage resistance of riverbed sediments in the study area. Then, the GW level and flow direction was simulated for different infiltration resistance and drainage resistance of sediments.