We studied gas exchange of leaves on branches that had been cut and then re-cut under water to assess the utility of measuring gas exchange on leaves of excised canopy branches. There was large variation between species in their ability to photosynthesize following excision. Some species maintained up to 86.5% of intact photosynthetic rate 60 min after excision, whereas other species dropped below 40% of intact photosynthetic rates within 3 min. Three species showed significant reductions in maximum rates of gross photosynthetic rate (PG) on leaves of excised branches relative to intact branches. Excision significantly reduced carboxylation rates (Vcmax) in four species and electron transport (Jmax) in two species. There were also significant increases in compensation irradiance and reductions of day rates of respiration relative to intact measurements. While gas exchange on excised branches can provide useful measures for canopy species, responses of individual species to branch excision need to be taken into account. Measurements on pre-screened species allow a greater understanding of canopy photosynthesis of large trees when canopy access is not an option. and L. S. Santiago, S. S. Mulkey.
Photosystem 2 (PS2)-driven electron transfer was studied in primary leaves of barley (Hordeum vulgare L.) seedlings grown under various photon fluxes (0.3-170.0 μmol m-2 s-1) of blue (BR) or red (RR) radiation using modulated chlorophyll fluorescence. The Fv/Fm ratio was 0.78-0.79 in leaves of all radiation variants, except in seedlings grown under BR or RR of 0.3 μmol m-2 s-1. The extent of the photochemical phase of the polyphasic Fv rise induced by very strong "white light" was similar in leaves of all radiation treatments. Neither radiation quality nor photon flux under plant cultivation influenced the amount of non QB-transferring centres of PS2 except in leaves of seedlings grown under BR of 0.3 μmol m-2 s-1, in which the amount of such centres increased threefold. Both BR and RR stimulated the development of photochemically competent PS2 at photon fluxes as low as 3 μmol m-2 s-1. Three exponential components with highly different half times were distinguished in the kinetics of Fv dark decay. This indicates different pathways of electron transfer from QA-, the reduced primary acceptor of PS2, to other acceptors. Relative magnitudes of the individual decay components did not depend on the radiation quality or the photon flux during plant cultivation. Significant differences were found, however, between plants grown under BR or RR in the rate of the middle and fast components of Fv dark decay, which showed 1.5-times faster intersystem linear electron transport in BR-grown leaves. and E. A. Egorova, N. G. Bukhov.