Changes in the utilization pattern of primary substrate, viz. [U-14C] acetate, 14CO2 and [U-14C] saccharose, and the contents of 14C fixation products in photosynthetic metabolites (sugars, amino acids, and organic acids) were determined in Fe-deficient citronella in relation to the essential oil accumulation. There was an overall decrease in photosynthetic efficiency of the Fe-deficient plants as evidenced by lower levels of incorporation into the sugar fraction and essential oil after 14CO2 had been supplied. When acetate and saccharose were fed to the Fe-deficient plants, despite a higher incorporation of label into sugars, amino acids, and organic acids, there was a lower incorporation of these metabolites into essential oils than in control plants. Thus, the availability of precursors and the translocation to a site of synthesis/accumulation, severely affected by Fe deficiency, is equally important for the essential oil biosynthesis in citronella. and N. K. Srivastava, A. Misra, S. Sharma.