Fifteen-day-old bean plants (Phaseolus vulgaris L.) grown in a climatic chamber were exposed to water deficit (WD) and high temperature (HT) stresses applied separately or in combination. Changes in chlorophyll fluorescence quenching were investigated. Bean plants that endured mild (42 °C, 5 h for 2 d) WD separately or in combination with HT did not change their qP and qN quenching (measured at 25 °C) compared with those of the control. After 5 min testing at 45 °C, qP in control and droughted plants strongly decreased, while qP of plants that experienced combined WD+HT stress was insignificantly influenced, suggesting the acclimation effect of HT treatments. At more severe stresses (after 3 d-treatment), qP measured at 25 °C was the lowest in WD+HT plants and qN values were the highest. But when measured at 45 °C, qP of WD+HT plants had practically the same values as at 25 °C. Under these conditions qP of WD plants also showed an adaptation to HT. Twenty-four hours after recovery, the unfavourable effects of the stresses were strongly reduced when measured at 25 °C, but they were still present when measured at 45 °C. Positive effect of the carbamide cytokinin 4-PU-30 was well expressed only in droughted plants. and I. Yordanov, V. Velikova, T. Tsonev.
Flooding is common in lowlands and areas with high rainfall or excessive irrigation. A major effect of flooding is the deprivation of O2 in the root zone, which affects several biochemical and morphophysiological plant processes. The objective of this study was to elucidate biochemical and physiological characteristics associated with tolerance to O2 deficiency in two clonal cacao genotypes. The experiment was conducted in a greenhouse with two contrasting clones differing in flood tolerance: TSA-792 (tolerant) and TSH-774 (susceptible). Leaf gas exchange, chlorophyll (Chl) fluorescence, chemical composition and oxidative stress were assessed during 40 d for control and flooded plants. Flooding induced a decrease in net photosynthesis, stomatal conductance and transpiration of both genotypes. In flood conditions, the flood-susceptible clone showed changes in chlorophyll fluorescence, reductions in chlorophyll content and increased activity of peroxidase and polyphenol oxidase. Flooding also caused changes in macro- and micronutrients, total soluble sugars and starch concentrations in different plant organs of both genotypes. Response curves for the relationship between photosynthetically active radiation (PAR) and net photosynthetic rate (PN) for flooded plants were similar for both genotypes. In flood conditions, the flood-susceptible clone exhibited (1) nonstomatal limitations to photosynthesis since decreased in maximum potential quantum yield of PSII (Fv/Fm) values indicated possible damage to the PSII light-harvesting complex; (2) oxidative stress; (3) increased leaf chlorosis; and (4) a reduction in root carbohydrate levels. These stresses resulted in death of several plants after 30 d of flooding., F. Z. Bertolde ... [et al.]., and Obsahuje bibliografii