In a greenhouse experiment, the influence of arbuscular mycorrhizal fungi (Glomus mosseae and Glomus intraradices) and water stress [100% field capacity (FC), 75% FC, 50% FC and 25% FC] on maximal quantum yield of photosystem II (PSII) photochemistry (Fv/Fm) and some other ecophysiological characteristics of two pistachio cultivar (Pistacia vera cv.
Badami-Riz-Zarand and Pistacia vera cv. Qazvini) were investigated.
No difference was found in colonization rate between the two arbuscular mycorrhizal fungi (AMF) applied. Water stress reduced the mycorrhizal colonization in both cultivars at the same rate but the difference was significant just with severe water stress level (25% FC). The Fv/Fm was also adversely affected by water stress from 75% FC downwards in Qazvini cultivar while in Badami, increase in water-stress intensity had no significant effect on this parameter. Gasexchange parameters were decreased with increasing stress intensity and chlorophyll (Chl) pigments were increased with mild water stress (75% FC) compared with control (100% FC) and then decreased with increasing stress intensity. The carotenoids (Car) content increased significantly in the stressed leaves in all water-stress levels irrespective of AMF treatment and cultivar type.
The adverse effects of water stress were significantly reduced by AM inoculation and in the most of measured parameters, both AMF had an equal influence except with the intercellular CO2 concentration (Ci), where G. intraradices was superior. Results obtained from Chl fluorescence probe indicated that inoculated AMF enhanced photochemical efficiency of light reactions of the PSII in intact pistachio leaf tissues both under irrigation and waterstress conditions. Under mild and moderate water stress, mycorrhizal pistachio plants had higher relative Chl and Car content and higher gas-exchange capacity (increased photosynthesis and transpiration rate) but under severe water-stress condition (25% FC), the effects of mycorrhizal treatments were not noticeable. Data obtained in present study emphasized that Qazvini is more tolerant to water stress than Badami because photosynthesis activity in Qazvini was more efficiently protected than in the Badami, as indicated by related parameters. and V. Bagheri ... [et al.].
Vývoj fotónových kryštálov ukázal, že niektoré umelé kompozity môžu mať v určitom intervale frekvencií zápornú efektívnu permitivitu aj magnetickú permeabilitu. V článku diskutujem niektoré elektromagnetické vlastnosti takýchto materiálov: záporný index lomu, zosilnenie evanescentných vĺn, a ich využitie pri konštrukcii šošovky s nulovou zobrazovacou chybou (perfect lens)., Peter Markoš., and Obsahuje seznam literatury