The leaf water potential, gas-exchange parameters and chlorophyll fluorescence were evaluated in five common oil palm (Elaeis guineensis Jacq.) tenera hybrids 913X1988, 1425X2277, 748X1988, 7418X1988, and 690X1988 under water deficit with an aim to identify hybrids which can cope up better under such conditions and understand possible differences among hybrids in relation to the physiological mechanisms triggered by water deficit. Our findings indicate oil palm hybrids 913X1988, 1425X2277, and 7418X1988 maintained higher leaf water potentials than the other hybrids. Hybrids 7418X1988 and 1425X2277 recorded lower stomatal conductance after water deficit, which resulted in higher intrinsic water-use efficiency. The excess light energy produced due to decreased photosynthesis in 7418X1988 and 690X1988 hybrids under water deficit was dissipated as heat by higher nonphotochemical quenching. The maximum efficiency of photosystem II was not affected, even after withholding water for 24 days, suggesting an increased efficiency of photoprotection mechanisms in all these oil palm hybrids., K. Suresh ... [et al.]., and Obsahuje bibliografii
In order to understand the physiological traits important in conferring salt tolerance in three barley genotypes, this study was performed under field conditions with three water salinity levels (2, 10, and 18 dS m-1). High salinity decreased net photosynthetic rate, transpiration rate, and stomatal conductance, K+ concentration, K+:Na+ ratio, and grain yield, but increased electrolyte leakage and Na+ content. Under 10 and 18 dS m-1 salinity, Khatam (salt-tolerant) had the maximum stomatal conductance, K+, K+:Na+ ratio, and the grain yield, and a minimum Na+ content and electrolyte leakage, whereas Morocco (salt-sensitive) had the lowest net photosynthetic rate, stomatal conductance, K+ content, K+:Na+ ratio, and grain yield, and the highest Na+ content and electrolyte leakage. This study showed that tolerant genotypes of barley may avoid Na+ accumulation in aboveground parts, facilitating a higher photosynthetic rate and higher grain yield., M. Mahlooji, R. Seyed Sharifi, J. Razmjoo, M. R. Sabzalian, M. Sedghi., and Obsahuje bibliografii