Short-term responses of four carrot (Daucus carota) cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) to CO2 concentrations (Ca) were studied in a controlled environment. Leaf net photosynthetic rate (PN), intercellular CO2 (Ci), stomatal conductance (gs), and transpiration rate (E) were measured at Ca from 50 to 1 050 μmol mol-1. The cultivars responded similarly to Ca and did not differ in all the variables measured. The PN increased with Ca until saturation at 650 μmol mol-1 (Ci= 350-400 μmol mol-1), thereafter PN increased slightly. On average, increasing Ca from 350 to 650 and from 350 to 1 050 μmol mol-1 increased PN by 43 and 52 %, respectively. The PNvs.Ci curves were fitted to a non-rectangular hyperbola model. The cultivars did not differ in the parameters estimated from the model. Carboxylation efficiencies ranged from 68 to 91 μmol m-2 s-1 and maximum PN were 15.50, 13.52, 13.31, and 14.96 μmol m-2 s-1 for Cascade, CC, Oranza, and RCC, respectively. Dark respiration rate varied from 2.80 μmol m-2 s-1 for Oranza to 3.96 μmol m-2 s-1 for Cascade and the CO2 compensation concentration was between 42 and 46 μmol mol-1. The gs and E increased to a peak at Ca= 350 μmol mol-1 and then decreased by 17 and 15 %, respectively when Ca was increased to 650 μmol mol-1. An increase from 350 to 1 050 μmol mol-1 reduced gs and E by 53 and 47 %, respectively. Changes in gs and PN maintained the Ci:Ca ratio. The water use efficiency increased linearly with Ca due to increases in PN in addition to the decline in E at high Ca. Hence CO2 enrichment increases PN and decreases gs, and can improve carrot productivity and water conservation. and S. Kyei-Boahen ... [et al.].
Photoinhibition of photosynthesis was investigated in Vitis berlandieri and Vitis rupestris leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of PS2, Fv/Fm, markedly declined, F0 increased significantly in leaves of V. berlandieri, while F0 did not increase in V. rupestris leaves. Isolated thylakoids of leaves of V. berlandieri showed significant inhibition of whole chain and PS2 activities at midday. A smaller inhibition was observed for V. rupestris. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both species, while DPC and NH2OH significantly restored PS2 activity in V. rupestris midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in V. berlandieri while in V. rupestris it was the 33 kDa protein. and M. Bertamini, N. Nedunchezhian.
The rainy season affects the development of maize in Liaoning Province in China. Continuous, rainy weather and scant sunlight result in poor pollination, bald tips, and in an abnormally high, barren stalk. Field studies were conducted at the kernel formation stage (3-11 d after silking). Paired, near-isogenic lines of nonbarren stalk (Shennong 98B) and barren stalk (Shennong 98A) were exposed to 38, 60, and 75% shading to investigate changes in photosynthesis and chlorophyll (Chl) fluorescence characteristics under different light intensities. Net photosynthetic rate (PN), leaf maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching of Chl fluorescence (qP), and actual photochemical efficiency of PSII (ΦPSII) of Shennong 98B were always higher than those of Shennong 98A under natural light, contrary to nonphotochemical quenching (NPQ). Fv/Fm, ΦPSII, and qP increased, while PN and electron transport rate (ETR) decreased after shading, and this was aggravated with increasing shade intensity. PN, qP, ΦPSII, and ETR were lower than the values in natural light condition after seven days of shading. NPQ, Fv/Fm, ΦPSII, qP, and ETR recovered, when shading was removed. The PN of two inbred lines returned soon to the control levels after 38% shade. Under shade and natural light conditions, the PN and Chl fluorescence characteristics of Shennong 98A were both lower than those of Shennong 98B. We suggest that a poor adaptability to low light is an important physiological reason for inducing barren stalk in low light-sensitive maize., X. M. Zhong, Z.S. Shi, F.H. Li, H.J. Huang., and Obsahuje bibliografii