Xerophytic stomatal traits may help plants maintain photosynthetic rates under water deficit; however, such adaptations are not well understood. A pot experiment was conducted with two winter wheat cultivars (Pubing 143, Zhengyin 1) during the grain-filling period. Net photosynthetic rate (PN) and chlorophyll (Chl) content were significantly less affected by water deficit in Pubing 143 than that in Zhengyin 1, and the variation in both PN and Chl content were more stable in spikes compared to flag leaves. At 18 days after anthesis, stomatal conductance of spikes in Pubing 143 were 28% lower than that of the control, while transpiration rate was 34% lower in Zhengyin 1 under water deficit. We provided the first evidence of amphistomatous stomata on the lemma of winter wheat spikes through scanning electron microscopic observations. The finding of the amphistomatous stomata is an important contribution to stomatal distribution and may help explain how wheat spikes can maintain high photosynthetic rates even under drought conditions., H. Ding, D. Liu, X. Liu, Y. Li, J. Kang, J. Lv, G. Wang., and Obsahuje bibliografii