Dust deposition on leaf surfaces can impact the growth and physiological traits of plants. We carried out a field experiment to investigate short-term effects of light surface dust on photosynthesis of cotton in the Tarim Basin using chlorophyll fluorescence and gas-exchange techniques. JIP-test analysis of OJIP curves showed that the total performance index for leaves without dust decreased by 32% at noon compared to the morning value. High irradiance at noon reduced actual quantum yield of PSII and increased nonphotochemical quenching for leaves without dust, showing photoinhibition. It suggested that light surface dust alleviated photoinhibition of cotton to high irradiance on a short-term basis. For the leaves without dust, high irradiance induced photoinhibition not only with respect to the photochemistry reactions but the biochemical pathways of CO2 fixation. Mechanisms such as thermal dissipation and enhanced electron flux to PSI protected the photosynthetic apparatus under high irradiance., L. Li, G. Mu., and Obsahuje bibliografii