AKCES-GEC is a grammar error correction corpus for Czech generated from a subset of AKCES. It contains train, dev and test files annotated in M2 format.
Note that in comparison to CZESL-GEC dataset, this dataset contains separated edits together with their type annotations in M2 format and also has two times more sentences.
If you use this dataset, please use following citation:
@article{naplava2019wnut,
title={Grammatical Error Correction in Low-Resource Scenarios},
author={N{\'a}plava, Jakub and Straka, Milan},
journal={arXiv preprint arXiv:1910.00353},
year={2019}
}
Automatically generated spelling correction corpus for Czech (Czesl-SEC-AG) is a corpus containg text with automatically generated spelling errors. To create spelling errors, a character error model containing probabilities of character substitution, insertion, deletion and probabilities of swaping two adjacent characters is used. Besides these probabilities, also the probabilities of changing character casing are considered. The original clean text on which the spelling errors were generated is PDT3.0 (http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3). The original train/dev/test sentence split of PDT3.0 corpus is preserved in this dataset.
Besides the data with artificial spelling errors, we also publish texts from which the character error model was created. These are the original manual transcript of an audiobook Švejk and its corrected version performed by authors of Korektor (http://ufal.mff.cuni.cz/korektor). These data are similarly to CzeSL Grammatical Error Correction Dataset (CzeSL-GEC: http://hdl.handle.net/11234/1-2143) processed into four sets based on error difficulty present.
Corpus of texts in 12 languages. For each language, we provide one training, one development and one testing set acquired from Wikipedia articles. Moreover, each language dataset contains (substantially larger) training set collected from (general) Web texts. All sets, except for Wikipedia and Web training sets that can contain similar sentences, are disjoint. Data are segmented into sentences which are further word tokenized.
All data in the corpus contain diacritics. To strip diacritics from them, use Python script diacritization_stripping.py contained within attached stripping_diacritics.zip. This script has two modes. We generally recommend using method called uninames, which for some languages behaves better.
The code for training recurrent neural-network based model for diacritics restoration is located at https://github.com/arahusky/diacritics_restoration.
CzeSL-GEC is a corpus containing sentence pairs of original and corrected versions of Czech sentences collected from essays written by both non-native learners of Czech and Czech pupils with Romani background. To create this corpus, unreleased CzeSL-man corpus (http://utkl.ff.cuni.cz/learncorp/) was utilized. All sentences in the corpus are word tokenized.
Grammar Error Correction Corpus for Czech (GECCC) consists of 83 058 sentences and covers four diverse domains, including essays written by native students, informal website texts, essays written by Romani ethnic minority children and teenagers and essays written by nonnative speakers. All domains are professionally annotated for GEC errors in a unified manner, and errors were automatically categorized with a Czech-specific version of ERRANT released at https://github.com/ufal/errant_czech
The dataset was introduced in the paper Czech Grammar Error Correction with a Large and Diverse Corpus that was accepted to TACL. Until published in TACL, see the arXiv version: https://arxiv.org/pdf/2201.05590.pdf
Grammar Error Correction Corpus for Czech (GECCC) consists of 83 058 sentences and covers four diverse domains, including essays written by native students, informal website texts, essays written by Romani ethnic minority children and teenagers and essays written by nonnative speakers. All domains are professionally annotated for GEC errors in a unified manner, and errors were automatically categorized with a Czech-specific version of ERRANT released at https://github.com/ufal/errant_czech
The dataset was introduced in the paper Czech Grammar Error Correction with a Large and Diverse Corpus that was accepted to TACL. Until published in TACL, see the arXiv version: https://arxiv.org/pdf/2201.05590.pdf
This version fixes double annotation errors in train and dev M2 files, and also contains more metadata information.
RobeCzech is a monolingual RoBERTa language representation model trained on Czech data. RoBERTa is a robustly optimized Transformer-based pretraining approach. We show that RobeCzech considerably outperforms equally-sized multilingual and Czech-trained contextualized language representation models, surpasses current state of the art in all five evaluated NLP tasks and reaches state-of-theart results in four of them. The RobeCzech model is released publicly at https://hdl.handle.net/11234/1-3691 and https://huggingface.co/ufal/robeczech-base, both for PyTorch and TensorFlow.