Little data on the role played in vivo by chloroplast protein AtDeg2 as a chaperone is available. Therefore, we sought for chloroplast proteins protected from high irradiance-induced interprotein aggregation via disulphide bridges by AtDeg2 acting as a holdase. To reach this goal, we performed analyses which involved comparative diagonal electrophoreses of lysates of chloroplasts isolated from wild type (WT) plants and transgenic plants 35S:AtDEG2ΔPDZ1-GFP which expressed AtDeg2 lacking its chaperone activity but retaining the protease activity. The results of the analyses indicate that AtDeg2 acting as a holdase prevents a single chloroplast protein, i.e., the γ1 subunit of ATP synthase from long-term high irradiance-induced homodimerization mediated by disuplhide bridges and this allows us to better understand a complexity of physiological significance of AtDeg2 - the chloroplast protein of dual protease/chaperone activity.
Many RNA recognition motif (RRM)-containing proteins are known to exist in chloroplasts. Major members of the RRM protein family, which are chloroplast ribonucleoproteins (cpRNPs), have been investigated in seed plants, including tobacco and Arabidopsis thaliana, but never in early land plants, such as bryophytes. In this study, we surveyed RRM proteins encoded in the moss Physcomitrella patens genome and predicted 25 putative chloroplast RRM proteins. Among them, two RRM-containing proteins, PpRBP2a and PpRBP2b, resembled cpRNPs and were thus referred to as cpRNP-like proteins. However, knockout mutants of either one or two PpRBP2 genes exhibited a wild type-like phenotype. Unlike Arabidopsis cpRNPs, the levels of mRNA accumulation in chloroplasts were not affected in the PpRBP2 knockout mutants. In addition, the efficiency of RNA editing was also not altered in the mutants. This suggests that PpRBP2a and 2b may be functionally distinct from Arabidopsis cpRNPs., H. Uchiyama, M. Ichinose, M. Sugita., and Obsahuje bibliografické odkazy
Development of mesophyll cell chloroplasts during ontogeny of second wheat (Triticum aestivum L.) leaf was compared in plants grown in Ml nutrient solution (+N) and in nutrient solution without nitrogen (-N). Chloroplast size and ultrastructure were evaluated quantitatively by means of transmission electron microscopy and stereology. In -N plants compared to +N ones, the life spán of the second leaf was shortened and chloroplast development modified; the most striking feature was the accumulation of starch. Moreover, mature chloroplasts of -N plants were smaller and had smaller relative partial volume of thylakoids and larger relative partial volume of plastoglobules than those of +N plants.
Glechoma longituba (Nakai) Kupr. is a perennial shade plant with pharmaceutical importance. The aim of this study was to investigate the effects of light intensity on the growth, photosynthesis, and accumulation of secondary metabolites in G. longituba grown under six different light environments. The high light intensity decreased the leaf size, specific leaf area, and aboveground dry mass, the number of grana per chloroplast, the number of lamella per granum, the thickness of the grana, the apparent quantum efficiency, the chlorophyll (Chl) content, the concentrations of ursolic and oleanolic acid. The high light increased the stomatal density, the stoma size, the number of chloroplast per a cell, the chloroplast size, the dark respiration rate, the light saturation point, the light compensation point, and the Chl a/b ratio. With the reduction in the light intensity, the light-saturated net photosynthetic rate, the aerial dry mass per plant, and the yields of ursolic and oleanolic acid decreased after an initial increase, peaking at 16 and 33% of sunlight levels. Overall, the 16 and 33% irradiance levels were the most efficient in improving the yields and qualities of the medicinal plant. The lower light demand and growth characteristics suggest that G. longituba is an extremely
shade-tolerant plant and that appropriate light intensity management might be feasible to obtain higher yields of secondary metabolites in agricultural management., L. X. Zhang, Q. S. Guo, Q. S. Chang, Z. B. Zhu, L. Liu, Y. H. Chen., and Obsahuje bibliografii
Differences between sun (E) and shaded (S) foliage were studied in a Norway spruce (Picea abies [L.] Karst.) stand. Response curves describing the dependence of the CO2 assimilation rate (PN) on the CO2 concentration at the catalytic site of ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO (PN-Cc) were estimated using the simultaneous measurements of chlorophyll fluorescence and leaf gas exchange. Higher PN, higher electron transport (Ja), higher carboxylation capacity (Vc), and higher RuBPCO activity (τ) for sun acclimated needles was found. The S-needles had higher portion of internal limitation and higher CO2 compensation concentration (Γ) than the E-needles. Because higher degree of limitation of photosynthesis by carboxylation was ascertained, it can be assumed that photosynthesis in shade foliage is limited mainly by lower carboxylation capacity and by low chloroplastic CO2 concentration. and I. Priwitzer ... [et al.].
Changes in chloroplastidic pigments, gas exchange and carbohydrate concentrations were assessed during the rapid initial expansion of C. guianensis leaflet. Leaves at metaphyll stage were tagged and assessments were carried out 14, 17, 20, 23, 27, and 31 days later. Pigments synthesis, distribution and accumulation were uniform among leaflet sections (basal, median and apical). Chlorophyll (Chl) a, Chl b, Chl (a+b), and total carotenoids (Car) concentrations were significantly increased after 27 days from metaphyll, and the most expressive increases were parallel to lower specific leaflet area. Chl a/b was lower on day 14 and it was increased on subsequent days. Negative net photosynthesis rate (PN), and the lowest stomatal conductance (gs) and transpiration (E) were registered on day 14, following significant increases on subsequent days. The Chl (a+b) and Chl a effects on PN were more expressive until day 20. Intercellular to ambient CO2 concentration ratio (Ci/Ca) was higher on day 14 and lower on subsequent days, and no stomatal limitation to CO2 influx inside leaflets was observed. Leaflet temperature was almost constant (ca. 35°C) during leaflet development. Sucrose and starch concentrations were increased in parallel to increases in PN. Altogether, these results highlight the main physiological changes during C. guianensis leaflet expansion and they should be considered in future experiments focusing on factors affecting PN in this species. and F. K. C. Moraes ... [et al.].
Plastidy patria k najrozmanitejším bunkovým organelám. Hoci obsahujú vlastnú genetickú informáciu, sú do značnej miery závislé od jadrového genómu. V závislosti od signálov, ktoré prijímajú z vonkajšieho prostredia, sa môžu plastidy diferencovať do rôznych typov. Jedným takýmto signálom je aj svetlo, ktoré spúšťa diferenciáciu chloroplastov. Pri niektoré skupinách rastlín však svetlo nemá až taký zásadný vplyv na ich biogenézu a fotosyntetický aparát sa vyvíja aj bez prítomnosti svetla. and Plastids belong to the most diverse group of cell organelles. Although they have their own genetic information, they are dependent on the nuclear genome. The signals from the environment trigger plastid differentiation. One of those signals is light, but in some groups of plants the light is not necessary for the formation of chloroplasts and photosynthetic apparatus.
Muzeum prof. Ivo Chlupáče bylo otevřeno v roce 2008 jako součást Ústavu geologie a paleontologie Přírodovědecké fakulty UK v Praze. Zahrnuje rozsáhlé sbírky cenných fosilií (hlavně z oblasti střední Evropy) a expozici ilustrující jednotlivá období v historii Země přístupnou studentům i veřejnosti. and The Chlupáč Museum was launched at the Institute of Geology and Palaeontology, Faculty of Science, Charles University in Prague in 2008. It exhibits large collections of remarkable fossils, especially from Central Europe. The exhibition illustrating the particular stages/eras in the history of the Earth has been open to students, as well as to the general public.