To find the effects of CO2 enrichment on plant development and photosynthetic capacity of nodulated (line A62-1) and non-nodulated (line A62-2) isogenic lines of soybean (Glycine max Merr.), we examined the interactions among two CO2 treatments (36±3 Pa = AC and 70±5 Pa = EC), and two nitrogen concentrations [0 g(N) m-2(land area) = 0N; 30 g(N) m-2(land area) = 30N]. Nodules were found in both CO2 treatments in 0N of A62-1 where the number and dry mass of nodules increased from AC to EC. While the allocation of dry mass to root and shoot and the amount of N in each organ did not differ between the growth CO2 concentrations, there was larger N allocation to roots in 0N than in 30N for A62-2. The CO2-dependence of net photosynthetic rate
(PN) for A62-1 was unaffected by both CO2 and N treatments. In contrast, the CO2-dependence of PN was lower in 0N than in 30N for A62-2, but it was independent of CO2 treatment. PN per unit N content was unaffected by CO2 concentrations. The leaf area of both soybean lines grown in 30N increased in EC. But in 0N, only the nodulated A62-1 showed an increase in leaf area in EC. Nitrogen use efficiency of plants, NUE [(total dry mass of the plant)/(amount of N accumulated in the plant)] in 30N was unaffected by CO2 treatments. In 0N, NUE in EC was lower than in AC in A62-1, and was higher than that at AC in A62-2. Hence, the larger amount and/or rate of N fixation with the increase of the sink-size of symbiotic microorganisms supplied adequate N to the plant under EC. In EC, N deficiency caused the down-regulation of the soybean plant. and T. Nakamura ... [et al.].
Prolamellar bodies (PLBs) isolated from dark-grown, 6.5-d-old leaves of wheat (Triticum aesíivum L. cv. Kosack) were treated with the carboxylic acid cross-linker l-ethyl-3-[3-(diniethylaniino)propyl]carbodiimide (EDC) or with the lysině specific cross-linker 2-iniinothiolane. SDS-PAGE showed that the most prominenent cross- linked product was a dimer of the NADPH-protochlorophyllide oxidoreductase (PCR), but also larger aggregates of the polypeptide were identified by inununological detection on electro-blots. A two-dimensional diagonál gel showed that much of the cross-linking was between the PCR polypeptides. The cross-linkers induced a shift of the fluorescence peak to shorter wavelengths, a bandwidth increase of the fluorescence peak, and an increase of the fluorescence yield. In the presence of NADPH the blue shift was reduced, but the increase in the fluorescence yield still occmred. A cross-linker treatment of PLBs prior to solubilization with 1-0-n-octyl-P -D-glucopyranoside (octylglucoside) delayed, but did not prevent the spectral shifts from 657 to 646 nm and from 646 to 635 nm observed in non-cross-linked detergent- treated PLBs. The cross-linking did not prevent a spectral shift, corresponding to the Shibata shift, of Chlide. Thus the spectral shifts are not strictly coupled to disaggregation of the PCR polypeptides.
DPC played an important role in regulating the production, translocation and partítioning of i‘*C-assimilates in cotton {Gossypium hirsutum L.) plants. Seed soaking with DPC increased the partítioning of cotton assimilates into roots aitd main stem, and decreased the partítioning into seedling tip which was beneficial for the seedling. After the appearance of a square, spraying with DPC decreased the partítioning of assimilates into the main stem, branches and their growing points, and increased the partítioning into reproductíve organs and roots. This helped to avoid or reduce spindling, ensured a steady growth, coordination of the relatíon between vegetatíve and reproductíve organs, and improved the development of floral buds. From bloom to boll-setting,. sprayings with DPC greatly increased the partítioning of assimilates into reproductíve organs and decreased the partítioning into vegetatíve organs, which was usefiil for the growth and development of squares and bolls.
Water-withholding for 5 to 7 weeks and subsequent re-watering were made on potted plants of two epiphytic (E) and two terrestrial (T) fern species, which were collected from a seasonal tropical rainforest and had been grown in a screenhouse with 5 % irradiance for 4 months. During the water stress, the two E species completely closed stomata when frond relative water content (RWC) reached about 70 % with fairly constant maximum photochemistry efficiency (Fv/Fm), while the two T species kept partial stomata opening until RWC reached 45 % and reduction in Fv/Fm at the late stage. Also, chlorophyll content as indicated by a spectral reflectance index was gradually reduced in three species. Physiological recovery was completed after 3-d re-watering for the E species, which was more rapid than for the T species. The gas exchange measurements and regression analyses indicated higher photosynthetic water use efficiency in the E species than in the T species. and Q. Zhang ... [et al.].
The effect of enhanced air CO2 concentrations (C520 and 0^50 = 520 and 650 cm^ m"^) on the growth of Lamium galeobdolon and Stellaria holostea and on the competition between the two species was examined. After five months growth imder CO2 enrichment the dry masses of both species increased when the plants were grown in monoculture, but the increase in biomass was much more pronounced in Stellaria. When the plants were grown together in competition, the measured shoot masses of Stellaria were again higher under C520 and 0^50 than at ambient CO2 concentration (C390 = 390 cm^ m'^), while the shoot masses of Lamium strongly decreased at Cgso- The effect of CO2 enrichment on the two plant species in monoculture differed significantly from that observed in mixed cultures. In terms of plant relative yield, Stellaria benefitted slightly but insignificantly from competition, while Lamium was significantly suppressed imder c^sq. Total community production of the mixed culture was optimum at C520, while that of the monocultures was highest at c^sq. At C390 and C520, growth of Stellaria depended strongly on irradiance in all types of culture. At C650 no such dependence could be demonstrated.
In morphological and biochemical studies we demonstrated that the development of eight-day old dark-grown beán seedlings was drastically influenced by prolonged irradiation with far red (FR) irradiation. The synthetic processes associated with leaf expansion were fiilly active, but the accumulation of chJorophyll (Chl) was very slow and the development of the photosynthetic apparatus was much prolonged. The capacity for oxygen evolution and photophosphorylation began at about the 2''‘* day. Low temperature spectroscopy showed the accumulation of three Chl a forms with absorption maxima at 670, 677 and 683 nm from the veiy beginning of the greening process and the appearance of two longer wavelength forms (with maxima at 690 and 698 nm) at the onset of photosynthetic activity. Electron microscopy showed unfiised stacks of primary thylakoids without grana formation. When the FR treated seedlings were subsequently placed in "white light", grana differentiated from these primary thylakoids.
Changes of chlorophyll (Chl) a fluorescence and photosynthetic pigment contents were analysed in galled leaves (visibly damaged and undamaged parts) and intact leaves. The values of minimal fluorescence of the dark-adapted state, maximal quantum yield of PSII photochemistry, effective quantum yield of PSII photochemical conversion, and photochemical quenching coefficient decreased in Ulmus pumila L. leaves galled by Tetraneura ulmi (L.) and in U. glabra Huds. galled by Eriosoma ulmi (L.). Colopha compressa (Koch.) feeding affected these parameters only in damaged parts of U. laevis Pall. galled leaves. The increasing number of T. ulmi galls progressively decreased photosynthetic performance. In gall tissues of all analysed aphid species, the lowest photosynthetic pigment content was found, indicating that the photosynthetic capacity must have been low in galls. Significant reduction of Chl and carotenoid contents were observed in damaged and undamaged portions of galled leaves only in the case of T. ulmi feeding., K. Kmieć, K. Rubinowska, W. Michałek, H. Sytykiewicz., and Obsahuje bibliografii
We tested the effect of growing conditions during micropropagation on the fast kinetics of chlorophyll (Chl) fluorescence of Gardenia jasminoides Ellis plantlets during a 4-week acclimation to ex vitro. We studied whether photoautotrophic growing in vitro produced plantlets with less photoinhibition impairment during acclimation. Of the growing conditions stimulating photoautotrophy in vitro, only loose tube caps had a positive effect, whereas low sucrose or sucrose-free content in the medium and high PPFD showed a negative effect. Thus, plantlets cultured with 3 % (m/v) of sucrose were subsequently less photoinhibited throughout acclimation than those cultured with low sucrose (0.5 %) or sucrose-free media. Moreover, at the end of acclimation the former plantlets showed Fv/Fm and Fv/F0 ratios typical of unstressed ex vitro plants as well as a higher Chl content and ratio of Chls to carotenoids. Plantlets cultured at a photosynthetic photon fluence density (PPFD) of 50 µmol m-2 s-1 also showed a better performance at the end of acclimation than those cultured at a higher (110 µmol m-2 s-1) PPFD. Thus except in the case of loose-tube closure, gardenia plantlets cultured in vitro under conventional sucrose concentration and PPFD are the least photoinhibited during acclimation. Nevertheless, significant interactions between the in vitro growing factors were observed at the end of acclimation. and M. D. Serret, M. I. Trillas, J. L. Araus.
High irradiance promotes decreases in the quantum yield in plants, which reduce the photosynthetic rate. The excess of light in combination with water deficit can intensify the response of plants to stress, especially in species susceptible to those factors. The aim of the present study was to characterize the photosynthetic activity of young jatobá-do-cerrado (Hymenaea stigonocarpa Mart. ex Hayne) trees under different irradiance conditions, both alone and/or in combination with water deficit. Four irradiances [45, 230, 510, and 1,700 μmol(photon) m-2 s-1] and two levels of water in soil (90% and 50% of field capacity) were used. Gas exchange, water potential, and chlorophyll a fluorescence were measured. The highest rates of photosynthesis were observed under irradiances of 230 and 510 μmol(photon) m-2 s-1. Irradiance of 1,700 μmol(photon) m-2 s-1 led to the photoinhibition of photosynthesis, as indicated by a reduced maximum quantum yield of PSII, effective quantum yield ratio, and electron transport rate, as well as higher nonphotochemical quenching. The most stressful to young H. stigonocarpa plants was high irradiance, while water deficit did not intensify the response to light stress., A. C. Costa, S. L. Rezende-Silva, C. A. Megguer, L. M. F. Moura, M. Rosa, A. A. Silva., and Obsahuje bibliografii
Significantly lower Hill reaction activity together with greater sensitivity to photoinhibitory conditions was observed at various irradiances in atrazine-resistant biotypes of Senecio vulgaris L., Amaranthus retroflexus L., and Poa annua L. compared to the susceptible ones. and M. Körnerová, D. Holá, D. Chodová.