We studied the effect of herbicide and nitrogen supply on photosynthesis in Perilla frutescens L. Britt. Plants were exposed to combined treatment of urea and herbicide, fenoxaprop-P-ethyl (FPE), in various concentrations. FPE reduced significantly chlorophyll (Chl) content, photosynthetic rate, and stomatal conductance, but increased significantly intercellular CO2 concentration; thus, FPE inhibited significantly the photosynthetic capacity. In addition, FPE also decreased significantly the PSII photochemical efficiency, effective quantum yield of photochemical energy conversion in PSII, PSII potential activity, and photochemical quenching of variable Chl fluorescence. It also decreased nonphotochemical quenching. It indicated that FPE impaired PSII and blocked the electron transport in light reaction. The urea treatment at moderate concentration (1-4 g L-1) could antagonize the negative effect of FPE, while the high urea concentration (8 g L-1) aggravated this effect. The treatment with urea (4 g L-1) and then with FPE (1.33 mL L-1) enhanced Chl content index, photosynthetic rate, and stomatal conductance by 12.5, 36.1, and 28.5% compared to FPE treatment alone. Thus, we suggested to treat plants first with urea (4 g L-1) and then by FPE (1.33 mL L-1) as the best and the safest method to balance the fertilization and weeding., J. H. Zhang, S. J. Guo, P. Y. Guo, X. Wang., and Obsahuje bibliografii
Fully exposed, senescing leaves of Cornus sanguinea and Parthenocissus quinquefolia display during autumn considerable variation in both anthocyanin and chlorophyll (Chl) concentrations. They were used in this study to test the hypothesis that anthocyanins may have a photoprotective function against photosystem II (PSII) photoinhibitory damage. The hypothesis could not be confirmed with field sampled leaves since maximum photochemical efficiency (Fv/Fm) of PSII was negatively correlated to anthocyanin concentration and the possible effects of anthocyanins were also confounded by a decrease in Fv/Fm with Chl loss. However, after short-term laboratory photoinhibitory trials, the percent decrease of Fv/Fm was independent of Chl concentration. In this case, a slight alleviation of PSII damage with increasing anthocyanins was observed in P. quinquefolia, while a similar trend in C. sanguinea was not statistically significant. It is inferred that the assumed photoprotection, if addressed to PSII, may be of limited advantage and only under adverse environmental conditions. and Y. Manetas, C. Buschmann.
Under certain conditions the isolated reaction centre (RC) of photosystem 2 (PS 2) ís highly vulnerahle to photoinduced damage. With no added secondary electron acceptors or donors tíďs damage is due to singlet oxygen generated by the P680 triplet. This triplet is formed by recombination of the radical pair PóSO+Pheo' and Ihe photoinduced damage only occurs under aerobic conditions. When an electron acceptor is present, the degradation of pigments and the Dl and D2 proteins is due to formation of P680+ and secondary oxidation processes. Under the latter but not the former condition, characteristic pattems of degradation firagments of the Dl and D2 proteins are observed. In particular 24 and 17 kDa breakdown firagments of Dl are obtained while the D2 protein yields firagments having molecular masses of 29 and 21 kDa. Experiments involving the use of antibodies, radiophosphate and speciííc proteolytic digestion indicate that all four firagments contain the C-terminal portions of their mature proteins. These findings indicate that the proteolytic cleavage sites are positioned on the lumenal side of the membrane, particularly in the region spanning transmembrane helices I and II. Related studies on the 24 lď)a Dl protein fragment generated in vivo using Synechocystis sp. PCC 6803 by photoinhibitory treatment give the same conclusion for this firagment. Such a conclusion seems to contrast with the previous suggestion that the initial cleavage of Dl protein associated with its degradatíon and tumover occurs on the outer side of membrane in the region spanning transmembrane helices IV and V.
The detection of the Kautsky effect, i.e. the chlorophyll (Chl) fluorescence índuction kínetics induced in the dark-adapted leaves because of a sudden irradiation, by Hans Kautsky and his students is reviewed here on the occasíon of the 60* anniversary of this CW fluorescence transient discovery and oftBě 100* birth anniversary of Hans Kautsky in 1991.
Two different pathways for protochlorophyllide a (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to Eubacteria (i.e., the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction.
Chlorophyll a (Chl a) has an asymmetrical molecular organization, which dictates its orientation and the location of the pigment in the mature photosynthetic apparatus. Although Chl a fluorescence (ChlF) is widely accepted as a proxy for plant photosynthetic performance under countless stress conditions and across species, a mechanistic understanding of this causality is missing. Since water plays a much greater role than solvent for the photosynthetic machinery, elucidating its influence on Chl a may explain the reliable reflection of plant stress response in the ChlF signal. We examine the effect of hydration from well-watered to lethal drought on ChlF imagery results across morphologically diverse species to begin testing the impact of molecular scale hydration of Chl a on ChlF. Our results support a conceptual model where water is an integral part of the photosystems' structure and directly influences Chl a behavior leading to changes in the energy partitioning and ultimately in ChlF., C. R. Guadagno, D. P. Beverly, B. E. Ewers., and Obsahuje bibliografické odkazy
The changes in thermoluminescence (TL) signals induced by short-term ozone exposure of leaves are characterized by a down-shift of the peak-temperature of the TLB-band and an increase of a TL band at 55°C. We investigated the relationship of these changes to photosystem 2 (PS2) photochemistry. The changes were not only detectable in the presence of ozone, but also after irradiation of dark-adapted leaves and after aging of irradiated detached leaf segments. The opposite effect on TL, an up-shift of the peak-temperature of the B-band and the decrease of the intensity of the band at 55°C were found after infiltration of leaves with nigericin, antimycin A, and diphenyleneiodonium chloride (DPI). Propyl gallate down-shifted the peak-temperature of the B-band. 2,5-dimethyl-1,4-benzoquinone up-shifted the peak-temperature of the B-band and decreased the intensity of the 55°C band. The intensity of the 55°C band did not change significantly in the presence of oxygen in comparison to that in nitrogen atmosphere. It decreased with time of dark adaptation (50% intensity was observed after 3 h of dark adaptation at room temperature), however, it was reactivated to its initial value (at 5 min of dark adaptation) after 1 single-turnover flash. The 55°C band was not significantly changed in the presence of DCMU. Thus the ozone-induced band at 55°C is assigned to charge recombination in PS2. Changes in the electron transport chain at the acceptor side of PS2, probably related to the cyclic electron transport around photosystem 1 and/or chlororespiration, could play an important role in the increase of the 55°C band and the down-shift of the B-band. The changes at the acceptor side indicated by TL can be an ex pression of a physiological regulatory mechanism functional under stress conditions. and J. Skotnica ... [et al.].
Melatonin is a well-known bioactive molecule able to mitigate photooxidative damage caused by excess light. Here we have shown that mutant Arabidopsis lines with disrupted genes for melatonin putative receptor CAND2/PMTR1 and GPA1 encoding the α-subunit of heterotrimeric G-protein were partially insensitive to melatonin treatment under high light stress. They exhibited a higher degree of photodamage due to a significantly decreased photosynthetic activity and diminished expression of chloroplast and nuclear-encoded genes and the corresponding proteins. A possible mechanism for melatonin-dependent regulation of chloroplast genes is associated with a change in the activity of the genes for chloroplast RNA polymerases. We conclude that under high light stress, melatonin may act as a hormone-like signaling molecule via the CAND2/PMTR1-mediated signaling pathway.
Synechococcus is one of the most abundant photoautotrophic picoplankton in the marine ecosystem. However, it is not clear how Synechococcus assemblages respond to light intensity variation in a genus group. Here, enriched Synechococcus assemblages from in situ coastal seawater were subjected to light intensity simulation experiments in a range of 9-243 μmol(photon) m-2 s-1. Characteristics concerning physiology, genomics, and metatranscriptomics were analyzed. Physiologically, the fitting model predicted photosynthesis indications and pigment contents increased with different trends following the light intensity. Genomic sequencing demonstrated that both the phylogenetic and phenotypic compositions of Synechococcus assemblage exhibited population succession. Especially, the proportion of Synechococcus pigment type 2 was changed significantly. In metatranscriptomics, most genes were downregulated in the high-light intensity group, while photosynthesis-related genes were entirely upregulated. The high upregulation of photosynthesis-related genes, such as psbO, psbA, apcB, and cpcB, corresponded to the succession of Synechococcus genotype and was responsible for the physiological shift in response to light intensity.
Arthrospira maxima is unique among cyanobacteria, growing at alkaline pH (<11) in concentrated (bi)carbonate (1.2 M saturated) and lacking carbonic anhydrases. We investigated dissolved inorganic carbon (DIC) roles within PSII of A. maxima cells oximetrically and fluorometrically, monitoring the light reactions on the donor and acceptor sides of PSII. We developed new methods for removing DIC based on a (bi)carbonate chelator and magnesium for (bi)carbonate ionpairing. We established relative affinities of three sites: the water-oxidizing complex (WOC), non-heme iron/QA-, and solvent-accessible arginines throughout PSII. Full reversibility is achieved but (bi)carbonate uptake requires light. DIC depletion at the non-heme iron site and solvent-accessible arginines greatly reduces the yield of O2 due to O2 uptake, but accelerates the PSII-WOC cycle, specifically the S2-S3 and S3-S0 transitions. DIC removal from the WOC site abolishes water oxidation and appears to influence free energy stabilization of the WOC from a site between CP43-R357 and Ca2+., G. Ananyev, C. Gates, G. C. Dismukes., and Obsahuje bibliografické odkazy