This study developed a method for estimating the leaf area (LA) of muskmelon by using allometry. The best linear measure was evaluated first, testing both a leaf length and width (W). Leaf samples were collected from plants grown in containers of different sizes, leaves of four cultivars, at different develpoment stages, and of different leaf sizes. Two constants of a power equation were determined for relating allometrically a linear leaf measure and LA, in a greenhouse crop. W proved to be a better fit than the leaf length. The maximum attainable W and LA were estimated at Wx = 15.4 cm and LAx = 174.1 cm2. The indicators of fit quality showed that the function was properly related to LA and W as: LA/LAx = Ao × (W/WLx)b; the allometric exponent was b = 1.89, where R 2 = 0.9809 (n = 484), the absolute sum of squares, 0.4584, and the standard deviation of residues, 0.03084, based on relative values calculations (LA/LA x and W/WLx). The relationship was not affected by the cultivar, crop age, leaf size or stress treatment in the seedling stage. The empirical value of allometric constant (A0) was estimated as 0.963. and E. Misle ... [et al.].
Leaf chloroplast ultrastructure and photosynthetic properties of a natural, yellow-green leaf mutant (ygl1) of rice were characterized. Our results showed that chloroplast development was significantly delayed in the mutant leaves compared with the wild-type rice (WT). As leaves matured, more grana stacks formed concurrently with increasing leaf chlorophyll (Chl) content. Except for the lower intercellular CO2 concentration, the ygl1 plants had a higher leaf net photosynthetic rate, stomatal conductance, and transpiration rate than those of the WT plants. Under equal amounts of Chl, the excitation energy of PSI and PSII was much stronger in the mutant than that in the WT. The ygl1 plants showed higher nonphotochemical quenching and lower photochemical quenching. They also exhibited higher actual photochemical efficiency of PSII with a higher electron transport rate. Under the light of 200 μmol(photon) m-2 s-1, the ygl1 mutant showed lesser deepoxidation of violaxanthin in the xanthophyll cycle than WT, but it increased substantially under strong light conditions. In conclusion, the photosynthetic machinery of the ygl1 remained stable during leaf development. The plants were less sensitive to photoinhibition compared with WT due to the active xanthophyll cycle. The ygl1 plants were efficient in both light harvesting and conversion of solar energy., Z. M. Wu, X. Zhang, J. L. Wang, J. M. Wan., and Obsahuje bibliografii
Three prevalent aliphatic polyamines (PAs) include putrescine, spermidine, and spermine; they are low-molecular-mass polycations involved in many physiological processes in plants, especially, under stressful conditions. In this experiment, three bean (Phaseolus vulgaris L.) genotypes were subjected to well-watered conditions and two moderate and severe water-stressed conditions with and without spermidine foliar application. Water stress reduced leaf relative water content (RWC), chlorophyll contents, stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate, maximal quantum yield of PSII (Fv/Fm), net photosynthetic rate (PN), and finally grain yield of bean plants. However, spermidine application elevated RWC, gs, Ci, Fv/Fm, and PN, which caused an increase in the grain yield and harvest index of bean plants under water stress. Overall, exogenous spermidine could be utilized to alleviate water stress through protection of photosynthetic pigments, increase of proline and carotenoid contents, and reduction of malondialdehyde content., S. Torabian, M. R. Shakiba, A. Dabbagh Mohammadi Nasab, M. Toorchi., and Obsahuje bibliografii
Species of the Theobroma genus are primarily known by their commercially valuable seeds, especially, T. cacao is one of the most important tropical perennial crops. Beside T. grandiflorum, T. bicolor, and T. angustifolium, T. cacao is the only species of the genus that has been better studied to obtain physiologically relevant information. The main objective of this work was to evaluate the leaf gas exchange in seedlings of seven species of the Theobroma genus, seeking to identify characteristics that could be used in T. cacao breeding programmes. The study was realized under greenhouse conditions using six-month-old seedlings, in which net photosynthetic rate (PN), stomatal conductance (gs), transpiration (E), as well as parameters derived from light curves (PN vs. photosynthetically active radiation) were evaluated. T. cacao, along with T. microcarpum, showed the lowest values of PN, gs, and E, while the highest values were presented by T. speciosum, which showed higher saturation irradiance and lower intrinsic and instantaneous water-use efficiencies, being considered the species less conservative in water use. Therefore, the parameters shown by the different evaluated species could serve to design T. cacao genotypes, through introgression of genes for specific environments such as the cabruca system widespread in southern Bahia, Brazil., A.-A. F. Almeida, F. P. Gomes, R. P. Araujo, R. C. Santos, R. R. Valle., and Obsahuje bibliografii
Growth and physiological responses of cotton (Gossypium hirsutum L.) cultivars with different phosphorus (P) efficiencies under variable P environment are poorly known. Therefore, this study explored effects of normal P [P+, 70 kg(P2O5) ha-1] and without P (P-, 0 kg ha-1) on yield, growth, and physiology of different P-efficient cultivars [low-efficient Xinluzao 13 (L1) and Xinluzao 26 (L2); medium-efficient Xinluzao 10 (M1) and Xinluzao 24 (M2);
high-efficient Zhongmiansuo 42 (H1) and Xinluzao19 (H2)]. Cotton growth and yield was higher in H1 and H2 cultivars under P+ compare to P-. Leaf photosynthesis, intercellular CO2 concentration, stomatal conductance, and net assimilation rate increased under P+ and in high-efficient cultivars. Greater Rubisco activity and higher soluble sugar content further promoted P uptake and utilization efficiency which resulted in a higher yield under normal P+ than that at P- treatment. High-P-efficient cultivars have the potential to increase the yield by improving cotton growth and physiological attributes under P+., J. Wang, Y. Chen, P. Wang, Y. S. Li, G. Wang, P. Liu, A. Khan., and Obsahuje bibliografii
Global climate change may act as a potent agent of natural selection within species with Mediterranean mountain ecosystems being particularly vulnerable. The aim of this research was to analyze whether the phenotypic plasticity of Sesleria nitida Ten. could be indicative of its future adaptive capability to global warming. Morphological, anatomical, and physiological leaf traits of two populations of S. nitida growing at different altitudes on Mount Terminillo (Italy) were analyzed. The results showed that leaf mass per unit leaf area, leaf tissue density, and total leaf thickness were 19, 3, and 31% higher in leaves from the population growing at 1,895 m a.s.l. (B site) than in leaves from the population growing at 1,100 m a.s.l. (A site), respectively. Net photosynthetic rate (PN) and respiration rate (RD) peaked in June in both A and B leaves [9.4 +- 1.3 μmol(CO2) m-2 s-1 and 2.9 +- 0.9 μmol(CO2) m-2 s-1, respectively] when mean air temperature was 16 +- 2°C. R D/P N was higher in B than in A leaves (0.35 +- 0.07 and 0.21 +- 0.03, respectively, mean of the study period). The mean plasticity index (PI = 0.24, mean of morphological, anatomical, and physiological leaf traits) reflected S. nitida adaptability to the environmental stress conditions at different altitudes on Mount Terminillo. Moreover, the leaf key traits of the two populations can be used to monitor wild populations over a long term in response to global change., L. Gratani, M. F. Crescente, V. D’Amato, C. Ricotta, A. R. Frattaroli, G. Puglielli., and Obsahuje bibliografii
Tropical canopy tree species can be classified into two types by their heterobaric and homobaric leaves. We studied the relation between both leaf types and their water use, together with the morphological characteristics of leaves and xylem, in 23 canopy species in a tropical rain forest. The maximum rates of photosynthesis and transpiration were significantly higher in heterobaric leaf species, which also underwent larger diurnal variations of leaf water potential compared to homobaric leaf species. The vessel diameter was significantly larger and the stomatal pore index (SPI) was significantly higher in heterobaric than that in homobaric leaf species. There was a significant positive correlation between the vessel diameter, SPI, and maximum transpiration rates in all the studied species of both leaf types. However, there was no significant difference in other properties, such as leaf water-use efficiency, leaf mass per area, leaf nitrogen content, and leaf δ13C between heterobaric and homobaric leaf species. Our results indicate that leaf and xylem morphological differences between heterobaric and homobaric leaf species are closely related to leaf water-use characteristics, even in the same habitat: heterobaric leaf species achieved a high carbon gain with large water use under strong light conditions, whereas homobaric leaf species can maintain a high leaf water potential even at midday as a result of low water use in the canopy environment., Y. Inoue, T. Kenzo, A. Tanaka-Oda, A. Yoneyama, T. Ichie., and Obsahuje bibliografii
A cyanobacterium containing phycobiliproteins with far-red acclimation was isolated from Pozas Rojas, Cuatro Ciénegas, México. It was named Leptolyngbya CCM 4 after phylogenetic analysis and a description of its morphological characteristics. Leptolyngbya was grown in far-red light. Sucrose-gradient analysis of the pigments revealed two different colored bands of phycobiliproteins. A band at 60% sucrose was a phycocyanin containing phycobilisome; at 35% sucrose, a new type of phycobiliprotein absorbed at 710 nm. SDS-PAGE revealed the presence of two types of core-membrane linkers. Analysis of the hydrophobic pigments extracted from the thylakoid membranes revealed Chl a, d, and f. The ratio of Chl f/a was reversibly changed from 1:12-16 under far-red light to an undetectable concentration of Chl f under white light. Cuatro Ciénegas, a place surrounded by the desert, is a new ecosystem where a cyanobacterium, which grows in farred light, was discovered., C. Gómez-Lojero, L. E. Leyva-Castillo, P. Herrera-Salgado,
J. Barrera-Rojas, E. Ríos-Castro, E. B. Gutiérrez-Cirlos., and Obsahuje bibliografické odkazy
We aimed to find out relations among nonphotochemical quenching (NPQ), gross photosynthetic rate (PG), and photoinhibition during photosynthetic light induction in three woody species (one pioneer tree and two understory shrubs) and four ferns adapted to different light regimes. Pot-grown plants received 100% and/or 10% sunlight according to their light-adaptation capabilities. After at least four months of light acclimation, CO2 exchange and chlorophyll fluorescence were measured simultaneously in the laboratory. We found that during light induction the formation and relaxation of the transient NPQ was closely related to light intensity, light-adaption capability of species, and PG. NPQ with all treatments increased rapidly within the first 1-2 min of the light induction. Thereafter, only species with high PG and electron transport rate (ETR), i.e., one pioneer tree and one mild shade-adapted fern, showed NPQ relaxing rapidly to a low steady-state level within 6-8 min under PPFD of 100 μmol(photon) m-2 s-1 and ambient CO2 concentration. Leaves with low PG and ETR, regardless of species characteristics or inhibition by low CO2 concentration, showed slow or none NPQ relaxation up to 20 min after the start of low light induction. In contrast, NPQ increased slowly to a steady state (one pioneer tree) or it did not reach the steady state (the others) from 2 to 30 min under PPFD of 2,000 μmol m-2 s-1. Under high excess of light energy, species adapted to or plants acclimated to high light exhibited high NPQ at the initial 1 or 2 min, and showed low photoinhibition after 30 min of light induction. The value of fastest-developing NPQ can be quickly and easily obtained and might be useful for physiological studies., S.-L. Wong, M.-Y. Huang, C.-W. Chen, J.-H. Weng., and Obsahuje bibliografii
Leaf senescence is always associated with decline in photosynthesis, consequently a loss of cellular sugar. On the other hand, execution of senescence program needs energy and leaves, therefore, tend to collect sugars from other sources to sustain energy homeostasis. This sugar reprogramming induced by loss of sugar involves operation of a complex catabolic network. The exact molecular mechanism of induction and regulation of the network, however, is not fully resolved but the current literature available suggests sugar starvation as a signal for induction of several senescence-associated genes including the genes coding for the enzymes for degradation of cellular constituents and their conversion to respiratory sugars. The late expression of genes coding for the cell wall hydrolases and enhancement in the activity of these enzymes late during senescence are indicative of the cell wall polysaccharides as the last source of sugars to sustain energy homeostasis for execution of the senescence program., B. Biswal, J. K. Pandey., and Obsahuje bibliografické odkazy