Effect of selenium on leaf senescence was studied in oilseed rape plants treated with 10 μM Na2SeO4 at a rosette growth stage. In addition to developmental senescence, N deficiency and leaf detachment were used for induction of senescence. Nonphotochemical quenching declined in old leaves as senescence became more advancing but rose progressively in the plants supplied by Se. The total carbohydrate and protein pools decreased with leaf age, while increased by the Se treatment. However, during senescence induced by N deficiency, Se did not change remarkably the C and N metabolism, but delayed senescence mainly through protection of plants from photoinhibitory effects. After detachment, untreated leaves became chlorotic and necrotic, while the Se-treated ones remained fairly green. Our results demonstrated that Se delayed leaf senescence by a maintaining or even improving photochemical activities. During developmental senescence, the Se effect on the extending life span of the leaves was additionally linked to the metabolic regulation of senescence., S. Rahmat, R. Hajiboland, N. Sadeghzade., and Obsahuje bibliografii
Two lichen species collected in maritime Antarctica (King George Island) were exposed under laboratory conditions to excess irradiance to evaluate the response of photosystem 2 (PS2). The response was measured on fully hydrated lichen thalli at 5 °C by means of a modulated fluorometer using chlorophyll (Chl) fluorescence induction curve supplemented with analysis of quenching mechanisms. Chl fluorescence parameters [i.e. ratio of variable to maximum Chl fluorescence (FV/FM), quantum yield of PS2 photochemical reactions (Φ2), quenching coefficients] were evaluated before and several times after exposition to high irradiance in order to characterise the extent of photoinhibition, fast and slow phase of recovery. Strong irradiance (2 000 μmol m-2 s-1) caused high degree of photoinhibition, particularly higher in fruticose (Usnea antarctica) than in foliose (Umbilicaria decussata) lichen species. Fast phase of recovery from photoinhibition, corresponding to regulatory mechanisms of PS2, was more apparent in U. decussata and Φ2 than in U. antarctica and FV/FM and Φ2 within 40 min after photoinhibitory treatment. It was followed by a slow phase lasting several hours, corresponding to repair and re-synthesis processes. After photoinhibitory treatment, recovery of non-photochemical quenching (NPQ) was faster and more pronounced in U. decussata than in U. antarctica. Significant differences were found between the two species in the rate of recovery in fast-(qE) and slow-recovering (qT+I) component of NPQ. and M. Barták, H. Vráblíková, J. Hájek.
The sensitivity of marine algal biotest ISO 10253 to the photosystem 2 (PS2) herbicide diuron (DCMU) was determined. Using the diatom Phaeodactylum tricornutum, we found that the algal growth rate was reduced to 50 % of the control value (EC50) for ca. 200 nM DCMU. This value is too high to allow a practical application of the biotest for concentrations of the PS2 herbicides found in natural waters. The mechanisms causing the low sensitivity of the biotest to the PS2 herbicide were investigated by measuring parameters of photosynthetic apparatus in the diatom prior and during the biotest. The apparent dissociation constant for DCMU in P. tricornutum found by measurements of inhibition of oxygen evolution and of variable fluorescence was in the range 60-90 nM. This should lead to a much higher sensitivity of the biotest than found in our experiments. The low biotest sensitivity is caused by an acclimation to sub-lethal DCMU concentrations. The acclimation is manifested by the chlorophyll content per cell that is increasing with the DCMU concentration. During a prolonged exposure to sub-lethal herbicide concentrations, we observed also a selection of DCMU resistant organisms indicating that also an adaptation may decrease the test sensitivity. The biotest sensitivity may increase when the acclimation and adaptation are limited by shortening of the experiment duration. and J. Soukupová ... [et al.].
Wheat (Triticum aestivum L.) cv. Jimai22 was used to evaluate the effect of ethylene evolution rate (EER) and 1-aminocyclopropane-1-carboxylic acid (ACC) and their relations with photosynthesis and photochemical efficiency in plants well-watered (WW) and under a severe water deficit (SWD). SWD caused a noticeable reduction in the grain mass. The marked increases in both EER and the ACC concentration were observed under SWD; it was reversed effectively by exogenous spermidine (Spd) or amino-ethoxyvinylglycine (AVG). Thermal images indicated that SWD increased obviously the temperature of flag leaves, mainly due to the decrease in transpiration rate under SWD. Exogenous Spd or AVG decreased to some extent the temperature of the flag leaves. The strong decline in photosynthetic rate (PN) and stomatal conductance as well as the photodamage of PSII were also observed under SWD after 14 and 21 days after anthesis (DAA). Intercellular CO2 concentration was reduced at 7 DAA, but slightly increased at 14 and 21 DAA under SWD, indicating that the decreased PN at 7 DAA might result from stomatal limitations, while the decline after 14 and 21 DAA might be attributed to nonstomatal limitations. Correlation analysis suggested that EER and ACC showed negative relations to photosynthesis and photochemical efficiency. Data obtained suggested that the effects of SWD were mediated predominantly by the increase in EER and ACC concentration, which greatly decreased the leaf photosynthesis and photochemical efficiency, and, therefore, reduced the grain mass. Application of Spd or AVG reduced the EER and ACC, and thus positively influenced photosynthesis and photochemical efficiency under SWD., W. Yang, Y. Yin, W. Jiang, D. Peng, D. Yang, Y. Cui, Z. Wang., and Obsahuje bibliografii
The contents of chlorophyll (Chl) and carotenoids (Car) per fresh mass were lower in shade needles than in sun needles. Ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and contents of soluble proteins were also significantly lower in shade needles. In isolated thylakoids, a marked lower rate of whole chain and photosystem (PS) 2 activities were observed in shade needles. Smaller lower rate of PS1 activity was also observed in shade needles. The artificial exogenous electron donors, diphenyl carbazide (DPC) and NH2OH, significantly restored the loss of PS2 activity in shade needles. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked lower rate of PS2 activity in shade needles was due to the lower contents of 47, 33, 28-25, 23, and 17 kDa polypeptides. This conclusion was confirmed by immunological studies showing that the content of the 33 kDa protein of the watersplitting complex was diminished significantly in shade needles. and M. Bertamini, K. Muthuchelian, N. Nedunchezhian.
Physiological responses of two duckweed species, Lemna gibba and Lemna minor, to hexavalent chromium [Cr(VI)] were studied in axenic cultures using short-term (48 h) treatments by K2Cr2O7 (0-200 μM). Chlorophyll (Chl) fluorescence parameters and photosynthetic pigment composition of plants were screened to determine the effects of Cr(VI) exposures. The two duckweed species exhibited different sensitivity in the applied Cr(VI) concentration range. Chl fluorescence parameters of dark-adapted and light-adapted plants and electron transport inducibility were more sensitive to Cr(VI) in L. minor than in L. gibba. We also found fundamental differences in quantum yield of regulated, Y(NPQ), and nonregulated, Y(NO), non-photochemical quenching between the two species. As Cr(VI) concentration increased in the growth medium, L. minor responded with considerable increase of Y(NPQ) with a parallel significant increase of Y(NO). By contrast, in L. gibba only 200 μM Cr(VI) in the growth medium resulted in elevation of Y(NPQ) while Y(NO) remained more or less constant within the regarding Cr(VI) concentration range during 48 h. Photosynthetic pigment content did not change considerably during the short-term Cr(VI) treatment but decrease of Chl a/b and increase of Car/Chl ratios were observed in good accordance with the changes in Chl fluorescence parameters. The data suggest that various duckweed species respond with different sensitivity to the same ambient concentrations of Cr(VI) in the growth medium, and presumably to other environmental stresses too, which may have an influence on their competitive relations when heavy metal pollution occurs in aquatic ecosystem. and V. Oláh ... [et al.].
Ozone is the major phytotoxic air pollutant that reduces the yield of several agricultural crops in the Spanish Mediterranean area. We studied four lettuce cultivars (Lactuca sativa L.) for the effects of different O3 concentrations during the winter on chlorophyll (Chl) a fluorescence, lipid peroxidation, and root length in outdoor open-top chambers. Under O3 the photosynthetic quantum conversion declined while heat emissions increased in all cultivars; these results provide more evidence of non-filtered air with additional ozone (NFA+O3) treatment compared with non-filtered air (NFA) and charcoal filtered ozone-free air (CFA). Changes in the Chl a fluorescence may be associated with an increase in membrane lipid peroxidation as well as with observed reduction of root length under O3 stress. and A. Calatayud, J. W. Alvarado, E. Barreno.
We compared the responses of sun and shade acclimated saplings of Picea abies and Pinus cembra to excess photosynthetic photon flux density (PPFD) equivalently exceeding the level for saturating net photosynthetic rate (PN). Exposure for 2 h up to 2000 µmol(photon) m-2 s-1 did not affect radiant energy saturated PN. Photoinhibition of photosynthesis was indicated by a small (10 %) reduction of the potential efficiency of photosystem 2 as derived from measurements of chlorophyll fluorescence (FV/FM). However, the extent of FV/FM reduction and half-time for recovery were similar in sun and shade acclimated saplings of both species. Furthermore, the effect on FV/FM was not stronger when the plants were exposed to excess PPFD at 5 °C instead of 15 °C. Frost-hardening of plants increased slightly their resistance to excess PPFD. Establishment of these conifer saplings usually acclimated to shade in their natural habitat may hardly be endangered by a sudden increase of PPFD, e.g., by gap formation. and R. Gamper, S. Mayr, H. Bauer.
The earlier developed double-modulation chlorphyll (Chl) fluorometer was modified for measurements with intact leaves of higher plants. The Chl fluorometer is based on a non-periodic modulation of both actinic and measuring flashes. In addition, continuous orange actinic and far-red radiation were produced by separate arrays of light-emitting diodes (LEDs). Programmable timing of the flashes allows to cover a wide dynamic range from microseconds to minutes. We have demonstrated that the LEDs can produce single-turnover flashes that saturate QA reduction of intact leaves of Glyceria maxima and shoots of Picea abies. and O. Urban ... [et al.].
Four plant species, Elymus mollis Trin., Carex kobomugi Ohwi, Glehnia littoralis F. Schmidt ex Miq., and Vitex rotundifolia L.f., are dominant perennial species in coastal sand dunes of Korea. We examined a physiological adaptation of these species by measurements of diurnal variation in photosynthesis and chlorophyll (Chl) fluorescence and solute patterns in leaves during one season (June), which is favorable for plant growth of all four species. All four species adopted different strategies in order to utilize radiation and to maintain water status under a fluctuating microclimate. Although the lowest water contents among four plant species was found, E. mollis with a high Chl and K+ content showed better photosynthetic performance, with high stomatal conductance (gs), net photosynthetic rate (PN), instantaneous carboxylation efficiency (CE), and water-use efficiency. Midday depression of PN in E. mollis and G. littoralis, without a reduction of gs, was associated with a reduction in CE and maximum photochemical efficiency of PSII, indicating nonstomatal limitation. Photosynthesis depression in both C. kobomugi and V. rotundifolia, with relatively low gs values, could be attributed to both stomatal and nonstomatal limitations. The high storage capacity for inorganic ions in E. molli, C. kobomugi, and G. littoralis may play an efficient role in regulating photosynthesis and maintaining leaf water status through stomatal control, and can also play an important role in osmotic adjustment., J.-S. Hwang, Y.-S. Choo., and Obsahuje bibliografii