Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis in the field conditions under both ambient and higher temperature. Six diverse cotton cultivars were grown in the field at Stoneville, MS under both an ambient and a high temperature regime during the 2006-2008 growing seasons. Mid-season leaf net photosynthetic rates (PN) and dark-adapted chlorophyll fluorescence variable to maximal ratios (Fv/Fm) were determined on two leaves per plot. Temperature regimes did not have a significant effect on either PN or Fv/Fm. In 2006, however, there was a significant cultivar × temperature interaction for PN caused by PeeDee 3 having a lower PN under the high temperature regime. Other cultivars' PN were not affected by temperature. FM 800BR cultivar consistently had a higher PN across the years of the study. Despite demonstrating a higher leaf Fv/Fm, ST 5599BR exhibited a lower PN than the other cultivars. Although genetic variability was detected in photosynthesis and heat tolerance, the differences found were probably too small and inconsistent to be useful for a breeding program., W. T. Pettigrew., and Obsahuje bibliografii
Warming winter and atmospheric nitrogen (N) deposition are expected to have effects on net primary production (NPP) of Chinese fir (Cunninghamia lanceolata) plantation and implications for plantation carbon sequestration. The effects of nongrowing-season warming on plant morphological and physiological traits were investigated in a greenhouse experiment with two-year-old C. lanceolata seedlings. Elevated temperature (ET) during the nongrowing season significantly increased the net photosynthetic characteristics. The strongest effects occurred during warming period from 1 December 2014 to 1 February 2015 (W1). Moreover, the carbohydrate concentration was elevated due to the warming during W1, but it declined during four months of the warming (from 1 December 2014 to 1 April 2015, W2). The seedlings kept under N deposition (CN) showed a positive effect in all the above-mentioned parameters except δ13C. Significant interactions between ET and N deposition were observed in most parameters tested. At the end of the experiment (W2), the seedlings exposed to a combined ET and N deposition treatment exhibited the highest carbon contents. Our results showed that N deposition might ameliorate the negative effects of the winter warming on the carbon content., L. Yu, T. F. Dong, Y. B. Lu, M. Y. Song, B. L. Duan., and Obsahuje bibliografii
The influence of various concentrations of imazapic residues (0-800 μg kg-1) on the growth, chlorophyll content, and photosynthetic characteristics of maize seedlings was studied in a greenhouse pot experiment. Plant height, root length, shoot dry mass, root dry mass, and total dry mass of maize declined with the increase of imazapic residue concentrations. The root/shoot ratio initially decreased and then increased in presence of imazapic, which indicated that the effects of imazapic residues on plant height and root length might differ in maize seedlings. Lowered chlorophyll content and net photosynthetic rate were observed in leaves of maize seedlings in all treatments and indicated a dose-response relationship to imazapic concentrations. Intercellular carbon dioxide concentration, transpiration rate, and stomatal conductance also declined to varying extents, but the chlorophyll a/b ratio increased gradually together with the increase of imazapic residue concentrations. Generally, the maize seedlings were negatively affected by the imazapic residues in soil. Response of root length and biomass to imazapic residues could be the important index for maize variety selection., W. C. Su, L. L. Sun, R. H. Wu, Y. H. Ma, H. L. Wang, H. L. Xu, Z. L. Yan, C. T. Lu., and Obsahuje bibliografii
Calligonum caput-medusae is known to grow well when irrigated with water containing NaCl. The aim of this study was to investigate ecophysiological responses of C. caput-medusae to different NaCl concentrations. In our study, we examined the effect of 0, 50, 100, 200, and 400 mM NaCl. Our results demonstrated that maximum seedling growth occurred at 50 mM NaCl. Photosynthetic parameters, such as the photosynthetic pigment content and gas exchange parameters, correlated with growth response. High salinity (≥ 100 mM NaCl) resulted in a significant reduction of the plant growth. Similarly, marked declines in the pigment content, maximal efficiency of PSII photochemistry, net photosynthetic rate, transpiration rate, and stomatal conductance were also detected. However, intercellular CO2 concentration showed a biphasic response, decreasing with water containing less than 200 mM NaCl and increasing with NaCl concentration up to 400 mM. Water-use efficiency and intrinsic water-use efficiency exhibited the opposite response. The reduction of photosynthesis at the high NaCl concentration could be caused by nonstomatal factors. High salinity led also to a decrease in the relative water content and water potential. Correspondingly, an accumulation of soluble sugars and proline was also observed. Na+ and
Cl- concentrations increased in all tissues and K+ concentrations were maintained high during exposure to NaCl compared with the control. High salinity caused oxidative stress, which was evidenced by high malondialdehyde and hydrogen peroxide contents. In order to cope with oxidative stress, the activity of antioxidative enzymes increased to maximum after 50 mM NaCl treatment. The data reported in this study indicate that C. caput-medusae can be utilized in mild salinity-prone environments., Y. Lu, J.-Q. Lei, F.-J. Zeng, B. Zhang, G.-J. Liu, B. Liu, X.-Y. Li., and Obsahuje bibliografii
Little is known regarding to impact of simulated shading conditions on cotton yield and fiber quality at different fruiting positions. In this 2-year study, our field experiments investigated the effects of shading percentage on the cotton yield, fiber properties, photosynthesis, and carbohydrate concentrations in boll's subtending leaves during various growing stages at different fruiting positions (FP). Net photosynthetic rate and effective quantum yield of PSII photochemistry decreased in response to shading on both FP1 and FP3 of the 7th sympodial branches, respectively. Shading also reduced sucrose and starch contents of leaves at each fruiting position. Shading decreased the number and mass of cotton bolls, the fiber strength and micronaire, while the fiber length increased at both fruiting positions. Our results suggested that shading resulted in the reduction of the cotton yield and fiber quality, which are mainly associated with the changes in boll number and alteration of photosynthesis and carbohydrate concentrations during the boll development., B. L. Chen, H. K. Yang, Y. N. Ma, J. R. Liu, F. J. Lv, J. Chen, Y. L. Meng, Y. H. Wang, Z. G. Zhou., and Obsahuje bibliografii
In our study, one-month-old Melissa officinalis plants were subjected to Fe-deficiency treatments, such as 10 µM Fe (as direct iron deficiency, DD), and 30 µM Fe + 10 mM NaHCO3 + 0.5 g l-1 CaCO3 (as indirect iron deficiency, ID), and 30 µM Fe (as control) for 14 d. Both Fe-deficiency types reduced plant growth, photosynthetic pigment contents, an active Fe content in roots and leaves, root Fe(III)-reducing capacity, Fe-use efficiency, maximal quantum yield of PSII photochemistry, a ratio of variable to basic fluorescence, and activities of antioxidant enzymes, while they increased lipid peroxidation and a H2O2 content in leaves. These effects were more pronounced in plants exposed to ID with bicarbonate than those of DD plants. We showed that sodium nitroprusside (SNP), as NO donor, could ameliorate the adverse effects of bicarbonate on above traits. The methylene blue, as NO blocker, reversed the protective effects conferred by SNP in the ID-treated plants as well as DD plants. These findings suggests that NO protects photosynthesis and growth of IDtreated plants as well as DD plants by contribution in availability and/or delivery of metabolically active iron or by changing activities of reactive oxygen species-scavenging enzymes., R. Amooaghaie, Sh. Roohollahi., and Obsahuje bibliografii
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA−. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low
re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain., Y. P. Sun, J. Liu, R. X. Cao, Y. J. Huang, A. M. Hall, C. B. Guo, L. J. Wang., and Obsahuje bibliografii
In this study, effects of yellow (Y), purple (P), red (R), blue (B), green (G), and white (W) light on growth and development of tobacco plants were evaluated. We showed that monochromatic light reduced the growth, net photosynthetic rate (PN), stomatal conductance, intercellular CO2, and transpiration rate of tobacco. Such a reduction in PN occurred probably due to the stomatal limitation contrary to plants grown under W. Photochemical quenching coefficient (qP), maximal fluorescence of dark-adapted state, effective quantum yield of PSII photochemistry (ΦPSII), and maximal quantum yield of PSII photochemistry (Fv/Fm) of plants decreased under all monochromatic illuminations. The decline in ΦPSII occurred mostly due to the reduction in qP. The increase in minimal fluorescence of dark-adapted state and the decrease in Fv/Fm indicated the damage or inactivation of the reaction center of PSII under monochromatic light. Plants under Y and G showed the maximal nonphotochemical quenching with minimum PN compared with the W plants. Morphogenesis of plants was also affected by light quality. Under B light, plants exhibited smaller angles between stem and petiole, and the whole plants showed a compact type, while the angles increased under Y, P, R, and G and the plants were of an unconsolidated style. The total soluble sugar content increased significantly under B. The reducing sugar content increased under B but decreased significantly under R and G compared with W. In conclusion, different monochromatic light quality inhibited plants growth by reducing the activity of photosynthetic apparatus in plants. R and B light were more effective to drive photosynthesis and promote the plant growth, while Y and G light showed an suppression effect on plants growth. LEDs could be used as optimal light resources for plant cultivation in a greenhouse., L. Y. Yang, L. T. Wang, J. H. Ma, E. D. Ma, J. Y. Li, M. Gong., and Obsahuje bibliografii
Broomcorn millet (Panicum miliaceum L.) is one of the important C4 crops in the semiarid regions of northern China. It is a close relative of biofuel crop switchgrass. Yet, there is no information on how these crops might respond to a climate change in China. In order to gain insight into such a response, we studied the effect of elevated CO2 concentration (EC) on broomcorn millet. The changes in leaf photosynthesis, chlorophyll fluorescence, morphological parameters, biomass and yield in response to EC [i.e., + 200 µmol(CO2) mol-1] over two years were determined at the open-top chamber (OTC) experimental facility in north China. EC increased net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, instantaneous transpiration efficiency, effective quantum yield of PSII photochemistry, and photochemical quenching coefficient of fully expanded flag leaves. Maximal quantum yield of PSII photochemistry declined under EC in 2013, but was not affected in 2014. EC significantly decreased intrinsic efficiency of PSII in 2013, but increased in 2014. Leaf nonphotochemical quenching decreased under EC both in 2013 and 2014. EC significantly enhanced the aboveground biomass and yield by average of 31.4 and 25.5% in both years, respectively. The increased yield of broomcorn millet under EC occurred due to the enhanced number of grains per plant. We concluded that photosynthesis of broomcorn millets was improved through increased stomatal conductance in leaves under EC, which led to an increase in height, stem diameter, aboveground biomass, and yield. This study extends our understanding of the response of this ancient C4 crop to elevated CO2 concentration., X. Y. Hao, P. Li, H. Y. Li, Y. Z. Zong, B. Zhang, J. Z. Zhao, Y. H. Han., and Obsahuje bibliografii
Metabolite changes and senescence behaviour after mechanical phloem girdling were studied in leaf tissue of Quercus pubescens. Sugar accumulation is not only considered to be an important part of several developmental signalling pathways, but is also seen as one of the basic triggers for senescence induction, or at least an obligatory accessory phenomenon. Our survey showed that an accumulation of the soluble sugars, glucose and fructose, was not on its own obligatorily connected with the induction of leaf senescence, since no indication or even an onset of senescence could be observed during the course of the experiment. Instead, we observed an inhibition of leaf development with a decrease of photosynthesis and a slow-down of development in nearly all chlorophyll a fluorescence analysis parameters using the JIP-test. We detected a change of metabolites linked to oxidative stress, possibly due to an overexcitation of the developmentally inhibited photosynthetic apparatus., V. Holland, L. Fragner, T. Jungcurt, W. Weckwerth, W. Brüggemann., and Obsahuje bibliografii