When investigating contaminant transport in groundwater aquifers, it is important to take into account the aqueous-phase density. In order to get the required information, the knowledge of functional relationship between the contaminant concentration and the aqueous-phase density is necessary. In this paper, the relationship was found for ten solutes commonly occurring in groundwater, namely CaCl2, KCl, K2CO3, K2SO4, KHSO4, Na2CO3, NaCl, Na2SO4, MgSO4 and MgCl2. Linear, parabolic and power functions have been applied and several quantities (mass fraction, molality, molarity, molar fraction, ionic strength and mass-volume concentration) have been considered in order to get the best accuracy of the obtained relationship. Finally, the problem of multicomponent solutions was solved. A new method of density determination was developed which makes use of known single-component relationships. The method was tested and its efficiency was verified and documented. and Při řešení problémů transportu kontaminantů v prostředí podzemní vody je důležité vzít v úvahu hustotu proudící fáze. K její znalosti je nezbytně nutná znalost závislosti hustoty fáze na koncentraci kontaminantu. Článek přináší potřebné funkční závislosti získané pro deset různých látek běžně se vyskytujících v prostředí podzemní vody, konkrétně pro CaCl2, KCl, K2CO3, K2SO4, KHSO4, Na2CO3, NaCl, Na2SO4, MgSO4 a MgCl2. Tři funkce, lineární, kvadratická a mocninná byly použity v kombinaci s různými veličinami (hmotnostní zlomek, molalita, molarita, molární zlomek, iontová síla a koncentrace) při hledání nejpřesnější formy výsledného vztahu. Problém byl následně řešen pro vícesložkové roztoky. Byla nalezena nová metoda využívající znalosti jednosložkových závislostí. Přesnost této metody byla v článku ověřena a dokumentována.
Soil water repellency (SWR) can influence many hydrological soil properties, including water infiltration, uneven moisture distribution or water retention. In the current study we investigated how variable SWR persistence in the field is related to the soil microbial community under different plant species (P. halepensis, Q. rotundifolia, C. albidus and R. officinalis) in a Mediterranean forest. The soil microbial community was determined through phospholipid fatty acids (PLFA). The relationships between microbiological community structure and the soil properties pH, Glomalin Related Soil Protein (GRSP) and soil organic matter (SOM) content were also studied. Different statistical analyses were used: Principal Component Analysis (PCA), ANOVA, Redundancy Analysis and Pearson correlations. The highest concentrations of PLFA were found in the most water repellent samples. PCA showed that microorganism composition was more dependent of the severity of SWR than the type of plant species. In the Redundancy Analysis, SWR was the only significant factor (p<0.05) to explain PLFA distributions. The only PLFA biomarkers directly related to SWR were associated with Actinobacteria (10Me16:0, 10Me17:0 and 10Me18:0). All the results suggest that a strong dependence between SWR and microbial community composition.
Mean annual recharge in the Danube-Tisza sand plateau region of Hungary over the 2000-2008 period was estimated at a 1-km spatial resolution as the difference of mean annual precipitation (P) and evapotranspiration (ET). The ET rates were derived from linear transformations of the MODIS daytime land surface temperature (Ts) values with the help of ancillary atmospheric data (air temperature, humidity, and sunshine duration). The groundwater under the sand plateau receives about 75 ± 50 mm of recharge annually (the plus/minus value is the associated error, resulting from an assumed 5% error in both the P and ET values), which is about 14 ± 9 % of the regional mean annual P value of 550 mm. The largest continuous region with elevated recharge rates (about 180 ± 50 mm a-1 or 30 ± 8 % of P) occur in the south-western part of the plateau due to more abundant precipitation (around 580 mm a-1), while recharge is the smallest (about 40 ± 40 mm a-1 or 7 ± 7 % of P) under forested areas. Typically, lakes, wetlands, river valleys, and certain afforested areas in the north-central part of the region act as discharge areas for groundwater. and Priemerný ročný úhrn doplňovania podzemných vôd plošiny zloženej z pieskov medzi riekami Dunaj a Tisa s rozlíšením 1 km, pre roky 2000-2008 bol určený ako rozdiel medzi priemerným ročným úhrnom zrážok (P) a evapotranspiráciou (ET). ET bolo určené z lineárnej transformácie teploty povrchu počas dňa (Ts) získanej systémom MODIS pomocou údajov o vlastnostiach atmosféry (teplota vzduchu, vlhkosť vzduchu a trvanie slnečného svitu). Podzemná voda pod pieskovým masívom dostáva ročne asi 75 ± 50 mm vody (znamienka plus/mínus znamenajú chybu, vyplývajúcu z predpokladanej 5% chyby hodnôt P a ET), ktorá je asi 14 ± 9 % regionálnej priemernej ročnej hodnoty P, ktorá je 550 mm. Najväčšia spojitá oblasť so zvýšeným doplňovaním podzemnej vody (približne 180 ± 50 mm za rok alebo 30 ± 8 % P) sa nachádza v juhozápadnej časti plató a je dôsledkom vyššieho ročného úhrnu zrážok (okolo 580 mm), doplňovanie je nižšie v zalesnených oblastiach (okolo 40 ± 40 mm, alebo 7 ± 7 % P). Jazerá, mokrade, rieky a niektoré zalesnené oblasti v strednej a severnej časti tejto oblasti drénujú podzemné vody.