Management of reservoirs for drinking water supply should be based on a thorough knowledge of water quality changes within variable conditions of hydrology, climate, nutrient loading and water storage. The two-dimensional longitudinal water quality model CE-QUAL-W2 was tested for its ability to predict concentrations of organic matter and trophic conditions in Rimov Reservoir, a small dimictic reservoir (volume 33,000,000 m3, maximum depth 43 m, hydraulic retention time 40 to 160 d) suffering from seasonally increased concentrations of humic substances and symptoms of eutrophication. The model was calibrated on two seasonal courses differing in hydrology and validated on a 1074 day period. The averages of absolute mean errors between simulated and measured vertical profiles of temperature, and concentrations of dissolved organic matter, dissolved oxygen and chlorophyll a in the validation run were 0.9 °C, 0.8 mg l-1, 1.2 mg l-1 and 0.008 mg l-1, respectively. Analysis of results and sensitivity analysis of modelling phytoplankton and phosphorus showed suitability of the mathematical description of their dynamics in the photic zone but not in the deeper layers. In spite of this partial problem, the model was found appropriate for the reliable predictions of water quality dynamics in Rimov Reservoir. and Hospodaření s vodou ve vodárenských nádržích by mělo být založeno na podrobné znalosti vlivu hydrologických, klimatických a limnologických veličin na kvalitu vody. Možnosti matematického modelování změn kvality vody byly testovány pro nádrž Římov na Malši za pomoci dvourozměrného modelu kvality vody CE-QUAL-W2. Model byl zkalibrován na dvou sezónních řadách dat pro hydrologicky různá období a poté byl uplatněn na 1074-denní řadě dat. Byly vyhodnoceny rozdíly mezi měřenými a simulovanými vertikálními profily teploty, koncentrací rozpuštěných organických látek, rozpuštěného kyslíku a chlorofylu. Tyto rozdíly vyjádřené jako velikost absolutní střední chyby byly 0,9 °C, 0,8 mg l-1 , 1,2 mg l-1 a 0.008 mg l-1 . Analýza získaných výsledků a citlivostní analýza modelu ukazují dobrou shodu mezi naměřenou a simulovanou dynamikou zmíněných veličin v eufotické zóně, v nižších a tmavších vrstvách nádrže dochází k nárůstu odchylek modelu od reality. Přes tyto dílčí problémy byl model shledán jako užitečný a nenahraditelný pomocník při úlohách řešících dopad vnějších vlivů na kvalitu vody v nádrži.
Brassinosteroids (BRs) and polyamines, well-established growth regulators, play a key role in abiotic stress response in plants. In the present study, we examined the role of 24-epibrassinolide (EBL, an active BR) and/or putrescine (Put) in the salt-induced stress in cucumber. The 15-d-old plants were exposed to 100 mM NaCl and they were subsequently treated by exogenous EBL and/or Put. The salt stress reduced significantly plant growth and gas-exchange parameters, and increased proline content and electrolyte leakage in the leaves. Toxic effects induced by salt stress were completely overcome by the combination of EBL and Put. EBL and/or Put treatments improved the growth parameters of the NaCl-treated plants, such as shoot length, root length, fresh and dry mass. Our data also indicated that applications of EBL and Put upregulated the activities of the antioxidant enzymes, such as catalase, peroxidase, and superoxide dismutase under salt stress., Q. Fariduddin, B. A. Mir, M. Yusuf, A. Ahmad., and Obsahuje bibliografii
Seedlings of the hypoxia-sensitive cucumber cultivar were hydroponically grown under hypoxia for 7 d in the presence or absence of 24-epibrassinolide (EBR, 2.1 nM). Hypoxia significantly inhibited growth, while EBR partially counteracted this inhibition. Leaf net photosynthetic rate (PN), stomatal conductance, transpiration rate, and water-use efficiency declined greatly, while the stomatal limitation value increased significantly. The maximum net photosynthetic rate was strongly reduced by hypoxia, indicating that stomatal limitation was not the only cause of the PN decrease. EBR markedly diminished the harmful effects of hypoxia on PN as well as on stomata openness. It also greatly stimulated CO2 fixation by the way of increasing the carboxylation capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose-1,5-bisphosphate regeneration, Rubisco activity, and the protection of Rubisco large subunit from degradation. Our data indicated that photosystem (PS) II was damaged by hypoxia, while EBR had the protective effect. EBR further increased nonphotochemical quenching that could reduce photodamage of the PSII reaction center. The proportion of absorbed light energy allocated for photochemical reaction (P) was reduced, while both nonphotochemical reaction dissipation of light energy and imbalanced partitioning of excitation energy between PSI and PSII increased. EBR increased P and alleviated this imbalance. The results suggest that both stomatal and nonstomatal factors limited the photosynthesis of cucumber seedlings under hypoxia. EBR alleviated the growth inhibition by improving CO2 asimilation and protecting leaves against PSII damage., Y. H. Ma, S. R. Guo., and Obsahuje bibliografii
Podyjí National Park is one of the hotspots of fungal diversity in the Czech Republic (so far we know about 1400 species from this area). The main reasons for this fact (well-preserved natural habitats, habitat and geological diversity) are introduced and briefly discussed in the article. high fungal diversity is documented based on several examples of rare or endangered species, which are typical for some of the local habitats and characterize the range of ecological conditions in the studied area. and Jan Běťák.