Wild Arachis genotypes were analysed for chlorophyll a fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, i.e., SLA and SPAD readings (r =-0.76), SLA and ΔC (r = 0.42), and ΔC and SPAD readings (r = 0.30) were established. The ratio of maximal quantum yield of PSII photochemistry (Fv/Fm) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the Fv/Fm ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74. Selected Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha-1 per year in 2008 and 2009, respectively. Leaf
water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions., P. C. Nautiyal, A. L. Rathnakumar, G. Kulkarni, M. S. Sheshshayee., and Obsahuje bibliografii
Changes in photosynthetic attributes related to genetic improvement of cotton yield were studied in seven Chinese cotton cultivars widely grown in Xinjiang during the past 30 years. Our results showed that a chlorophyll (Chl) content and net photosynthetic rate (PN) of the 1980s cultivar was the highest among all after 60 days from planting (DAP). However, after 75 DAP, the Chl content, PN, and actual photochemical efficiency of PSII of the old cultivars declined gradually, whereas those of the new cultivars remained relatively high. Compared to the old cultivars, leaves of the new cultivars endured a longer period and their senescence was slower, shoot and boll dry mass was higher, but the root to shoot ratio was lower. The lint yield of the 2000s cultivars was 14.7 and 21.4% higher than that of 1990s and 1980s cultivars, respectively. The high yield of the new cultivars was attributed to a greater number of bolls per unit of area with high lint percentage. We suggested that the improved photosynthetic capacity and the increased ability to deliver photosynthates to reproductive sites during the peak boll-setting stage to boll-opening stage were the key physiological basis in the evolution process of cotton cultivars from 1980s to 2000s for the cotton yield improvement within a short growing period., H. H. Luo, H. L. Zhang, Y. L. Zhang, W. F. Zhang., and Obsahuje bibliografii
Ca2+ has been considered as a necessary ion for alleviation of stress-induced damages in plants. We investigated effects of exogenous Ca2+ on waterlogging-induced damage to pepper and its underlying mechanisms. Pepper seedlings under stress were treated by spraying of 10 mM CaCl2. Applying exogenous Ca2+ increased the biomass of pepper leaves and roots, improved photosynthetic characteristics, membrane permeability, root activity, osmotic substance contents, antioxidant enzyme and alcohol dehydrogenase activities, while it reduced lactate dehydrogenase activity. It maintained hydroxide radical contents and activities of malate dehydrogenase and succinate dehydrogenase relatively high. Our results suggested that applying exogenous Ca2+ could regulate osmotic substance contents, antioxidant system activity, root respiration, and metabolism, and subsequently alleviate waterlogging-induced damages to pepper plants., B. Z. Yang, Z. B. Liu, S. D. Zhou, L. J. Ou, X. Z. Dai, Y. Q. Ma, Z. Q. Zhang, W. C. Chen, X. F. Li, C. L. Liang, S. Yang, X. X. Zou., and Obsahuje bibliografii
Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50-150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance., L. Y. Wang, J. L. Liu, W. X. Wang, Y. Sun., and Obsahuje seznam literatury
Water deficit is one of the major limiting factors in vegetation recovery and restoration in loess, hilly-gully regions of China. The light responses of photosynthesis in leaves of two-year old Prunus sibirica L., Hippophae rhamnoides L., and Pinus tabulaeformis Carr. under various soil water contents were studied using the CIRAS-2 portable photosynthesis system. Light-response curves and photosynthetic parameters were analyzed and fitted using the rectangular hyperbola model, the exponential model, the nonrectangular hyperbola model, and the modified rectangular hyperbola model. Under high light, photosynthetic rate (PN) and stomatal conductance (gs) were steady and photoinhibition was not significant, when the relative soil water content (RWC) varied from 56.3-80.9%, 47.9-82.9%, and 33.4-92.6% for P. sibirica, H. rhamnoides, and P. tabulaeformis, respectively. The light-response curves of PN, the light compensation point (LCP), and the dark respiration rate (RD) were well fitted using the above four models. The nonrectangular hyperbola was the best model in fitting the data; the modified rectangular hyperbola model was the second, and the rectangular hyperbola model was the poorest one. When RWC was higher or lower than the optimal range, the obvious photoinhibition and significant decrease in PN with increasing photosynthetic photon flux density (PPFD) were observed in all three species under high light. The light saturation point (LSP) and apparent quantum yield also decreased significantly, when the upper limit of PPFD was 200 μmol m-2 s-1. Under these circumstances, only the modified rectangular hyperbola model was able to fit well the curves of the light response, LCP, LSP, RD, and light-saturated PN. and Y. Lang ... [et al.].
Our present work showed that the expression of genes encoding PTOX (terminal oxidase of chlororespiration) and PGR5 (one essential component of cyclic electron transfer) were stimulated by red and blue light, but the stimulation under red light was soon reversed by subsequent far-red light. The expression levels of PTOX and PGR5 under simulated light quality conditions in line with maize-soybean relay strip intercropping (SRI) were obviously lower than those under simulated soybean monocropping (SM), since the lower red:far-red ratio under SRI. Measurements on photosynthetic and chlorophyll fluorescence parameters suggested a decline of assimilatory power supply and a lower nonphotochemical quenching under SRI as compared to SM. In this case, weaker PGR-dependent cyclic electron transfer and chlororespiration under SRI, suggested by lower expression levels of PGR5 and PTOX, could be considered as means of reducing excitation energy dissipation to allocate more power toward CO2 assimilation., X. Sun, X. F. Chen, J. B. Du, W. Y. Yang., and Obsahuje seznam literatury
Expression quantitative trait loci (eQTL) analyses were applied in order to identify genetic factors that are relevant to the expression of a β-isoform Rubisco activase gene in maize, namely ZmRCAβ, in this study. During two years, a maize recombinant inbred line population was measured for ZmRCAβ expression levels at the grain filling stage. Based on a genetic map containing 916 molecular markers, we detected five eQTLs, namely qRCA2.1 on chromosome 2, and qRCA4.1, qRCA4.2, qRCA4.3, and qRCA4.4 on chromosome 4. These eQTLs explained the phenotypic variation ranging from 6.14% to 7.50% with the logarithm of the odd values ranging from 3.11 to 4.96. Based on the position of the eQTLs and ZmRCAβ on the chromosome, qRCA4.2 was inferred as a cis-eQTL and the remaining as a trans-eQTL, suggesting that a combination of both cis- and trans-acting elements might control ZmRCAβ expression. qRCA4.2, qRCA4.3, and qRCA4.4 were repeatedly detected during two years., Q. Sun, Y. Zhang, B. Chen, B. Jia, Z. L. Zhang, M. Cui, X. Kan, H. B. Shi, D. X. Deng, Z. T. Yin., and Obsahuje bibliografii
Extracellular ATP (eATP) has been considered as an important extracellular compound to mediate several physiological processes in plant cells. We investigated the effects of eATP on chlorophyll (Chl) fluorescence characteristics of kidney bean (Phaseolus vulgaris) leaves. Treatment with exogenous ATP at 1 mM showed no significant effect on the maximal photochemical efficiency of PSII. However, the treatment significantly enhanced the values of the PSII operating efficiency (ΦPSII), rate of photosynthetic electron transport through PSII (ETR), and photochemical quenching (qP), while the values of the nonphotochemical quenching (qN) and quantum yield of regulated energy dissipation of PSII (YNPQ) significantly decreased. Our observations indicated that eATP stimulated the PSII photochemistry in kidney bean leaves. Similarly, the treatment with exogenous Ca2+ or H2O2 at 1 mM caused also the significant increase in ΦPSII, qP, and ETR and the significant decrease in qN and YNPQ. LaCl3 (an inhibitor of Ca2+ channels) and dimethylthiourea (a scavenger of H2O2) abolished the effects of exogenous ATP. The results suggest that the role of eATP in enhancing the PSII photochemistry could be related to a Ca2+ or H2O2 signaling pathway., H.-Q. Feng, Q.-S. Jiao, K. Sun, L.-Y. Jia, W.-Y. Tian., and Obsahuje bibliografii
We report here the screening of sixteen cyanobacterial and three green algal strains from Thailand for their potential biohydrogen production. Five filamentous cyanobacterial species, namely Calothrix elenkinii, Fischerella muscicola, Nostoc calcicola, Scytonema bohneri, and Tolypothrix distorta, all possessing nitrogenase activity, showed potentially high biohydrogen production. These five strains showed higher hydrogen production in the absence than in the presence of nitrogen. In particular, F. muscicola had a 17-fold increased hydrogen production under combined nitrogen and sulfur deprived conditions. Among various sugars as a carbon source, glucose at 0.1% (w/v) gave the maximal hydrogen production of 10.9 μmol(H2) mg-1(Chl) h-1 in T. distorta grown in BG11 medium without nitrate. Increasing light intensity up to 250 μmol(photon) m-2 s-1 increased hydrogen production in F. muscicola and T. distorta. Overall results indicate that both F. muscicola and T. distorta have a high potential for hydrogen production amenable for further improvement by using molecular genetics technique., P. Yodsang, W. Raksajit, E.-M. Aro, P. Mäenpää, A. Incharoensakdi., and Obsahuje bibliografické odkazy
New spectral absorption photometry methods are introduced to estimate chlorophyll (Chl) content of corn leaves by smart phones. The first method acquires light passing through a leaf by smartphone camera, compensating for differences in illumination conditions. In order to improve performance of the method, spectral absorption photometry (SAP) with background illumination has been considered as well. Data were acquired by smartphone camera in Iowa State University maize fields. Various indices were extracted and their correlation with Chl content were examined by Minolta SPAD-502. Hue index in SAP reached R2 value of 0.59. However, with light-aided SAP (LASAP), R2 of 0.97 was obtained. Among traits, the vegetation index gave the most accurate indication. We can conclude that the high performance of LASAP method for estimating Chl content, leads to new opportunities offered by smart phones at much lower cost. This is a highly accurate alternative to SPAD meters for estimating Chl content nondestructively., F. Vesali, M. Omid, H. Mobli, A. Kaleita., and Obsahuje seznam literatury