Among the most extended ecosystems of the temperate zone, the seminatural, dry grasslands constitute a substantial proportion in the Carpathian Basin. The aim of our present study was to investigate the short-term effect of extensive fertilization on the species composition and CO2 exchange of loess grassland at community level. The in situ investigation of the latter parameter have not been yet carried out in Pannonian loess grasslands. Most of the parameters studied showed a considerable interannual variation both in the fertilized and in the control stands. As a result of the treatment, the average species number of the fertilized stand decreased by 22%, which was more significant in the autumn (26%) than in the spring. Diversity values, including Shannon index and species richness, increased by nearly 1.5 times in the year with adequate rainfall compared with the initial values. In general, species richness and the ratio of dicots decreased, while the ratio of therophytes, alien competitors, and C4 plants increased with the addition of fertilizers. Significant carbon sequestration potential was only detected during wet periods in the fertilized grass. The rate of CO2 uptake was found to be nearly five times higher in the fertilized stand and nearly three times higher in the control stand during the wet year compared with the previous, extremely dry year. The CO2 uptake potential of the fertilized grassland exceeded that of the control stand by 12% in the year with high rainfall, while the rate of CO2 exchange dropped by 50% in the dry year in the fertilized stand. Our study reinforced the idea that the decline in species richness was not necessarily followed by the reduction of stand level carbon uptake in a short period due to an insignificant change in ecophysiological functional groups. and S. Z. Czóbel ... [et al.].
Dust deposition on leaf surfaces can impact the growth and physiological traits of plants. We carried out a field experiment to investigate short-term effects of light surface dust on photosynthesis of cotton in the Tarim Basin using chlorophyll fluorescence and gas-exchange techniques. JIP-test analysis of OJIP curves showed that the total performance index for leaves without dust decreased by 32% at noon compared to the morning value. High irradiance at noon reduced actual quantum yield of PSII and increased nonphotochemical quenching for leaves without dust, showing photoinhibition. It suggested that light surface dust alleviated photoinhibition of cotton to high irradiance on a short-term basis. For the leaves without dust, high irradiance induced photoinhibition not only with respect to the photochemistry reactions but the biochemical pathways of CO2 fixation. Mechanisms such as thermal dissipation and enhanced electron flux to PSI protected the photosynthetic apparatus under high irradiance., L. Li, G. Mu., and Obsahuje bibliografii
Cuttings of Populus cathayana were exposed to three different alkaline regimes (0, 75, and 150 mM Na2CO3) in a semicontrolled environment. The net photosynthesis rate (PN), mesophyll conductance (gm), the relative limitations posed by stomatal conductance (Ls) and by mesophyll conductance (Lm), photosynthetic nitrogen-use efficiency (PNUE), carbon isotope composition (δ13C), as well as specific leaf area (SLA) were measured. PN decreased due to alkaline stress by an average of 25% and gm decreased by an average of 57%. Alkaline stress caused an increase of Lm but not Ls, with average Ls of 26%, and Lm average of 38% under stress conditions. Our results suggested reduced assimilation rate under alkaline stress through decreased mesophyll conductance in P. cathayana. Moreover, alkaline stress increased significantly δ13C and it drew down CO2 concentration from the substomatal cavities to the sites of carboxylation (Ci-Cc), but decreased PNUE. Furthermore, a relationship was found between PNUE and Ci-Cc. Meanwhile, no correlation was found between δ13C and Ci/Ca, but a strong correlation was proved between δ13C and Cc/Ca, indicating that mesophyll conductance was also influencing the 13C/12C ratio of leaf under alkaline stress. and G. Xu ... [et al.].
Silicon is known to improve resistance against salinity stress in maize crop. This study was conducted to evaluate the influence of silicon application on growth and salt resistance in maize. Seeds of two maize genotypes (salt-sensitive ‘EV 1089’ and salt-tolerant ‘Syngenta 8441’) were grown in pots containing 0 and 2 mM Si with and without 50 mM NaCl. After detailed investigation of ion concentrations in different maize organs, both genotypes were further selected in hydroponic experiment on basis of their contrasting response to salinity stress. In the second experiment, pre-germinated seedlings were transplanted into nutrient solution with 0 and 60 mM NaCl with and without 2 mM Si. Both genotypes differed significantly in their response to salinity. Silicon addition alleviated both osmotic and oxidative stress in maize crop by improving the performance of defensive machinery under salinity stress. Silicon application also improved the water-use efficiency in both tested genotypes under both normal and salinity stress conditions. In conclusion, this study implies that the silicon-treated maize plants had better chance to survive under salinity conditions and their photosynthetic and biochemical apparatus was working far better than that of silicon-non-treated plants., W. U. D. Khan, T. Aziz, M. A. Maqsood, M. Farooq, Y. Abdullah, P. M. A. Ramzani, H. M. Bilal., and Obsahuje bibliografii
Chlorophyll fluorescence serves as a proxy photosynthesis measure under different climatic conditions. The objective of the study was to predict PSII quantum yield using greenhouse microclimate data to monitor plant conditions under various climates. Multilayer leaf model was applied to model fluorescence emission from actinic light-adapted (F') leaves, maximum fluorescence from light-adapted (Fm') leaves, PSII-operating efficiency (Fq'/Fm'), and electron transport rate (ETR). A linear function was used to approximate F' from several measurements under constant and variable light conditions. Model performance was evaluated by comparing the differences between the root mean square error (RMSE) and mean square error (MSE) of observed and predicted values. The model exhibited predictive success for Fq'/Fm' and ETR under different temperature and light conditions with lower RMSE and MSE. However, prediction of F' and Fm' was poor due to a weak relationship under constant (R2 = 0.48) and variable (R2 = 0.35) light., E. Janka, O. Körner, E. Rosenqvist, C.-O. Ottosen., and Obsahuje bibliografii
To investigate how bisulfite promotes photosynthesis, a pot experiment was conducted with rice (Oryza sativa L.) plants to determine Rubisco activity and content, and Rubisco activase (RCA) gene expression after spraying NaHSO3 on rice leaves. The NaHSO3 treatment promoted significantly net photosynthetic rate (PN), carboxylation efficiency, maximum carboxylation rate, ribulose-1,5-bisphosphate regeneration rate, initial Rubisco activity, and RCA protein and mRNA concentrations. Therefore, the NaHSO3 enhancement of PN could be directly attributed to induction of RCA gene expression both at the transcription and translation levels. Thus, the increased RCA regulated the initial Rubisco activity in vivo., Y. Chen, J.-H. Jin, Q.-S. Jiang, C.-L. Yu, J. Chen, L.-G Xu, D.-A. Jiang., and Obsahuje bibliografii
Soil metal contamination leads to a decrease in a yield of crops and is a threat to human health. In the present study, the properties (i.e., photosynthetic pigments, gas-exchange parameters, chlorophyll fluorescence, biomass, leaf area, leaf mass per area) of three green vegetables (i.e., Brassica chinensis, Chrysanthemum coronarium, Brassica alboglabra) grown under various Cu treatments [0, 200, 400, and 600 mg(Cu) kg-1] were measured and analysed. The results showed that soil Cu contamination resulted in the damage of photosynthetic pigments, negative effects on gas exchange, and hampered growth of all three vegetables. However, it did not significantly influence PSII functions of the three vegetables. It indicates that soil Cu contamination negatively affected photosynthesis particularly due to stomatal factors, but not due to the damage of photosynthetic apparatus., M.-Z. Lin, M.-F. Jin., and Obsahuje bibliografii
A field trial was conducted to determine the effect of nitrogen-enriched biochar on soil water content, plant’s photosynthetic parameters, and grain yield of spring wheat at the Dingxi Experimental Station during the 2014 and 2015 cropping seasons. Results showed that biochar applied with nitrogen fertilizer at a rate of 50 kg ha-1 of N (BN50) increased soil water content in the 0-30 cm depth range by approximately 40, 32, and 53% on average at anthesis, milking, and maturity, respectively, compared with
zero-amendment (CN0). Stomatal conductance and net photosynthetic rate after the BN50 treatment increased by approximately 40 to 50% compared to CN0. Soil water content and photosynthetic traits also increased in other treatments using straw plus nitrogen fertilizer, but to lesser extent than that of BN50. Grain yields were highest (1905 and 2133 kg ha-1 in 2014 and 2015, respectively) under BN50. From this, biochar appears to have a potential for its use with N-fertilizer as a cost-effective amendment for crop production in semiarid environments., S. Yeboah, R. Zhang, L. Cai, L. Li, J. Xie, Z. Luo, J. Wu, D. L. Antille., and Obsahuje bibliografii
Four plant species, Elymus mollis Trin., Carex kobomugi Ohwi, Glehnia littoralis F. Schmidt ex Miq., and Vitex rotundifolia L.f., are dominant perennial species in coastal sand dunes of Korea. We examined a physiological adaptation of these species by measurements of diurnal variation in photosynthesis and chlorophyll (Chl) fluorescence and solute patterns in leaves during one season (June), which is favorable for plant growth of all four species. All four species adopted different strategies in order to utilize radiation and to maintain water status under a fluctuating microclimate. Although the lowest water contents among four plant species was found, E. mollis with a high Chl and K+ content showed better photosynthetic performance, with high stomatal conductance (gs), net photosynthetic rate (PN), instantaneous carboxylation efficiency (CE), and water-use efficiency. Midday depression of PN in E. mollis and G. littoralis, without a reduction of gs, was associated with a reduction in CE and maximum photochemical efficiency of PSII, indicating nonstomatal limitation. Photosynthesis depression in both C. kobomugi and V. rotundifolia, with relatively low gs values, could be attributed to both stomatal and nonstomatal limitations. The high storage capacity for inorganic ions in E. molli, C. kobomugi, and G. littoralis may play an efficient role in regulating photosynthesis and maintaining leaf water status through stomatal control, and can also play an important role in osmotic adjustment., J.-S. Hwang, Y.-S. Choo., and Obsahuje bibliografii
Cistus salvifolius L. is the most widely spread Cistus species around the Mediterranean basin. It colonizes a wide range of habitats growing from sea level to 1,800 m a.s.l., on silicolous and calcicolous soils, in sun areas as well as in the understory of wooded areas. Nevertheless, this species has been mainly investigated in term of its responsiveness to drought. Our aim was to understand which leaf traits allow C. salvifolius to cope with low-light environments. We questioned if biochemical and physiological leaf trait variations in response to a reduced photosynthetic photon flux density were related to leaf morphological plasticity, expressed by variations of specific leaf area (SLA) and its anatomical components (leaf tissue density and thickness). C. salvifolius shrubs growing along the Latium coast (41°43'N,12°18'E, 14 m a.s.l., Italy) in the open and in the understory of a Pinus pinea forest, were selected and the relationships between anatomical, gas exchange, chlorophyll (Chl) fluorescence, and biochemical parameters with SLA and PPFD variations were tested. The obtained results suggested long-term acclimation of the selected shrubs to contrasting light environments. In high-light conditions, leaf nitrogen and Chl contents per leaf area unit, leaf thickness, and Chl a/b ratio increased, thus maximizing net photosynthesis, while in shade photosynthesis, it was downregulated by a significant reduction in the electron transport rate. Nevertheless, the increased pigment-protein complexes and the decreased Chl a/b in shade drove to an increased light-harvesting capacity (i.e. higher actual quantum efficiency of PSII). Moreover, the measured vitality index highlighted the photosynthetic acclimation of C. salvifolius to contrasting light environments. Overall, our results demonstrated the morphological, anatomical, and physiological acclimation of C. salvifolius to a reduced light environment., G. Puglielli, L. Varone, L. Gratani, R. Catoni., and Obsahuje bibliografii