Seedlings of Chloris virgata were treated with varying (0-160 mM) salt-stress (SS; 1 : 1 molar ratio of NaCl to Na2SO4) or alkali-stress (AS; 1 : 1 molar ratio of NaHCO3 to Na2CO3). To compare these effects, relative growth rates (RGR), stored energy, photosynthetic pigment contents, net photosynthetic rates, stomatal conductance, and transpiration rates were determined. Both stresses did not change significantly the photosynthetic parameters of C. virgata under moderate stress (below 120 mM). Photosynthetic ability decreased significantly only at high stress (160 mM). Thus C. virgata, a natural alkali-resistant halophyte, adapts better to both kinds of stress. The inhibition effects of AS on RGR and energy storage of C. virgata were significantly greater than that of SS of the same intensity. The energy consumption of C. virgata was considerably greater while resisting AS than while resisting SS. and C. W. Yang ... [et al.]
Competition plays an important role in the replacement of native species by alien plants. A greenhouse experiment was conducted to investigate whether the competition pattern of alien Robinia pseudoacacia L. and native Quercus acutissima Carr. is affected by soil sterilization. Physiological traits, such as gas-exchange parameters and chlorophyll (Chl) content, and growth traits, such as the biomass accumulation of the two species, were examined in natural soil or in soil sterilized with benomyl. The results show that native Q. acutissima inhibits the growth of R. pseudoacacia in natural soil. When the two plants coexisted and competed under sterilization treatment, R. pseudoacacia was less inhibited by Q. acutissima and the competition of R. pseudoacacia decreased the growth of Q. acutissima in terms of biomass, Chl a, Chl b, total Chl, and Chl a/b. These results suggest that soil sterilization benefits the growth of R. pseudoacacia and changes the competition pattern by the changed soil biota. Soil sterilization increased the biomass of root nodules, which ultimately benefits the growth of R. pseudoacacia and root nodule bacteria may be important in the dispersal and invasion process of nitrogen-fixing alien plants such as R. pseudoacacia., H. Chen ... [et al.]., and Obsahuje bibliografii
We compared the responses of wild type (WT) and three mutants including npq1 (lutein-replete and violaxanthin deepoxidase-deficient), lut2 (lutein-deficient), and lut2-npq1 (double mutant) to high irradiance (HI, 2 000 μmol m-2 s-1) at both low (LT, 5 °C) and room (25 °C) temperature. Xanthophyll-dependent energy dissipation was highest in the WT, followed by the lut2, npq1, and npq1-lut2. At 25 °C the relative stress tolerance expressed by Fv/Fm was consistent with the energy dissipation capacity for the first 2 h of treatment. After 3-4 h, the Fv/Fm levels in lut2 and npq1 converged. Under combined LT and HI the relative tolerance sequence was in contrast to the energy dissipation capacity being WT > npq1> lut2 > lut2-npq1. There were little or no significant change in the contents of xanthophylls and carotenes or the chlorophyll (Chl) a/b ratio in any of the materials. Thus lutein (L) substitution possibly alters the conformation/organisation of L binding proteins to enhance damage susceptibility under HI at LT. The enhanced vulnerability is not compensated for the energy dissipation capacity in the lut2 background at LT. and Chang-Lian Peng, A. M. Gilmore.
Myrica cerifera L. (Myricaceae), the dominant woody species on many barrier islands along the southeastern coast of the United States, is expanding into grass-dominated, mesic, interdunal depressions where it forms dense thickets. Expansion may be attributed to a symbiotic nitrogen fixation with the bacterium Frankia, an evergreen leaf habit and, possibly, corticular photosynthesis (CP, i.e. refixation of respired CO2, %ref). We quantified seasonal variations in CP characteristics in first through fifth order branches of M. cerifera to determine the extent and relevance of CP to shrub expansion in coastal environments. Maximum mean %ref was 110±39 % of CO2 efflux in the dark (RD) in first order branches during winter. Minimum %ref was 18±3 % in fifth order branches during summer. Variations in %ref paralleled changes in incident photosynthetic photon flux density (PPFD). As incident PPFD attenuated with increasing branch order, %ref decreased. A less dense canopy in winter led to increased PPFD and increases in %ref. Total chlorophyll (Chl) content and Chl a/b ratios were consistent with shade acclimation as branch order increased. CP may be a mechanism to enhance M. cerifera shrub expansion because of the potential increase in whole plant carbon use efficiency and water use efficiency attributed to refixation of respired CO2. and J. K. Vick, D. R. Young.
The photosynthetic response of 8 cotton (Gossypium hirsutum L.) genotypes to changing irradiance was investigated under field conditions during the 1998 through 2000 growing seasons. Equations developed to describe the response of net photosynthetic rate (PN) to photosynthetic photon flux density (PPFD) demonstrated that, across all irradiances, the two okra leaf-type genotypes photosynthesized at a greater rate per unit leaf area than all of the six normal leaf-type genotypes. This superior photosynthetic performance of the okra leaf-type genotypes can be partially explained by their 13 % greater leaf chlorophyll content relative to that of the normal leaf-type genotypes. The 37 % reduction in leaf size brought upon by the okra leaf trait may have concentrated the amount of photosynthetic machinery per unit leaf area. Nevertheless, the lack of sufficient canopy leaf surface area suppressed the potential yield development that could accompany the higher PN per unit leaf area.
Forty-four genotypes from the rice germplasm were identified under photoinhibition/photooxidation and shade conditions and divided into four basic types: (1) cultivars tolerant to both photooxidation and shading, (2) cultivars tolerant to photooxidation but sensitive to shading, (3) cultivars tolerant to shading but sensitive to photooxidation, and (4) cultivars sensitive to both photooxidation and shading. Photosynthetic characteristics of a cultivar tolerant (cv. Wuyugeng 3) and a cultivar sensitive (cv. Xiangxian) to photooxidation and shading were compared. The photochemical efficiency (Fv/Fm) of photosystem 2 (PS2) and the content of PS2-D1 protein in the tolerant cultivar Wuyugeng 3 decreased less under photooxidative conditions as compared with Xiangxian. Under similar conditions, superoxide dismutase was induced rapidly to a higher activity and the active oxygen (O-) built up to a lower level in Wuyugeng 3 than in Xiangxian. Net photosynthetic rate (PN) decreased by 23 % in Wuyugeng 3 vs. 64 % in Xiangxian. Shading (80 %) during the booting stage caused only small decreases (7-13 %) in ribulose-1,5-bisphosphate carboxylase activity and PN in Wuyugeng 3 but severe decreases (57-64 %) were observed in Xiangxian which corresponded to the decreases in grain yield of the two cultivars (38 and 73 %, respectively). We described a simple and effective screening method and physiological basis for breeding crops for enhanced tolerance to both high and low irradiance. and Demao Jiao, Xia Li.
Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis in the field conditions under both ambient and higher temperature. Six diverse cotton cultivars were grown in the field at Stoneville, MS under both an ambient and a high temperature regime during the 2006-2008 growing seasons. Mid-season leaf net photosynthetic rates (PN) and dark-adapted chlorophyll fluorescence variable to maximal ratios (Fv/Fm) were determined on two leaves per plot. Temperature regimes did not have a significant effect on either PN or Fv/Fm. In 2006, however, there was a significant cultivar × temperature interaction for PN caused by PeeDee 3 having a lower PN under the high temperature regime. Other cultivars' PN were not affected by temperature. FM 800BR cultivar consistently had a higher PN across the years of the study. Despite demonstrating a higher leaf Fv/Fm, ST 5599BR exhibited a lower PN than the other cultivars. Although genetic variability was detected in photosynthesis and heat tolerance, the differences found were probably too small and inconsistent to be useful for a breeding program., W. T. Pettigrew., and Obsahuje bibliografii
In canopy shade leaves of grapevine (Vitis vinifera L. cv. Moscato giallo) grown in the field the contents of chlorophyll (Chl), carotenoids (Car), and soluble protein per fresh mass were lower than in sun leaves. RuBPC activity, in vivo nitrate reductase activity (indicator of nitrate utilisation), apparent electron transport rate, and photochemical fluorescence quenching were also significantly reduced in canopy shade leaves. When various photosynthetic activities were followed in isolated thylakoids, canopy shade leaves exerted a marked inhibition of whole chain and photosystem (PS) 2 activity. Smaller inhibition of PS1 activity was observed even in high-level canopy shade (HS) leaves. The artificial exogenous electron donors, DPC and NH2OH, significantly restored the loss of PS2 activity in HS leaves. Similar results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements. The marked loss of PS2 activity in canopy shade leaves was due to the loss of 47, 43, 33, 28-25, 23, 17, and 10 kDa polypeptides. and M. Bertamini, N. Nedunchezhian.
Photodynamic and photoprotective responses at different irradiances were investigated in transgenic rice (Oryza sativa) expressing Bradyrhizobium japonicum 5-aminolevulinic acid synthase (ALA-S). With high irradiance (HI) of 350 µmol m-2 s-1, transgenic lines P5 and P14 showed a decrease in contents of chlorophyll (Chl) and the chloroplast-encoded gene psbA mRNA, whereas a decrease in light-harvesting Chl-binding proteins was observed only in P14. These effects were not observed in the wild-type (WT) line treated with HI or all of the lines treated with low irradiance (LI) of 150 µmol m-2 s-1. HI resulted in a greater decrease in the quantum yield of photosystem 2 and a greater increase in non-photochemical quenching (NPQ) in the transgenic lines, particularly in P14, compared to WT. Photoprotective zeaxanthin contents increased at HI, even though carotenoid contents were lower in the transgenic lines compared to WT. When exposed to HI, superoxide dismutase greatly increased in transgenic lines P5 and P14, but peroxidase and glutathione reductase increased only in P14, in which more photodynamic damage occurred. Thus the greater expression of ALA-S in the transgenic plants developed the stronger protective functions, i.e. the increased values of NPQ and zeaxanthin, as well as more photodynamic reactions, i.e. decreased photosynthetic component and efficiency, in the photosynthetic complexes. However, the photodynamic reactions indicate that the antioxidant capacity was insufficient to cope with the severe stress triggered by photoactive porphyrins in the transgenic rice expressing ALA-S. and S. Jung ... [et al.].
We compared delayed fluorescence (DF) excitation spectrometry with radiocarbon (14C) technique using a monoalgal culture of Chlorella vulgaris grown under natural temperature and irradiance. This was done by monitoring the DF, in parallel to quantum efficiency (QE) and index of radiant energy utilization efficiency (Ψ) as calculated on the basis of carbon uptake measurements by radiocarbon technique. During the diurnal cycle, temperature, irradiance, and chlorophyll (Chl) contents were monitored in the algal culture that was kept in an open transparent plastic tank submerged at the surface of Lake Kinneret, Israel. The DF signal correlated with both the QE (r 2 = 0.869, p<0.01) and Ψ (r 2 = 0.977, p<0.01) during a diurnal cycle. We suggest that, besides the measurement of active Chl and phytoplankton population composition, the DF signal provides additional information on the QE and Ψ in phytoplankton population. and E. Kurzbaum, W. Eckert, Y. Z. Yacobi.