Insufficient attention has been paid to the physiological responses of sesame to drought and it is unclear if exogenous plant growth regulators are beneficial to drought-stressed sesame. Thus, a field study was conducted on seven Sesamum indicum genotypes affected by two levels of irrigation (60 and 80% depletions in available soil water) and by foliar-applied salicylic acid (SA; 0 and 0.6 mM). Water deficit led to depressions in net photosynthetic rate, stomatal conductance, leaf area index, chlorophyll a, b, and total chlorophyll contents, maximum quantum efficiency of PSII, and plant dry matter and seed yield, despite increases in carotenoid concentration, superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase activities. SA was found beneficial in ameliorating the depressions in all of the above characteristics, indicating that it could be applied for lessening the harmful effects of the drought stress., M. Yousefzadeh Najafabadi, P. Ehsanzadeh., and Obsahuje použitou literaturu
In order to study the responses of winter wheat cultivars released in different years to short-term high O3 exposure, an old cultivar ('Nongda 311', released in 1960s) and a modern one ('Yannong 19', released in 1990s) were treated with an O3 exposure (145 ± 12 mm3 m-3, 4 h d-1 for 3 d) shortly after anthesis stage (> 50 % main stems blossomed). During the O3 exposure, light-saturated photosynthetic rate (PN) and stomatal conductance (gs) of both cultivars decreased considerably. Elevated O3 did not decrease dark-adapted maximum photochemical efficiency, but induced significant reduction in actual photochemical efficiency and thereby considerably increase in non-photochemical quenching. PN, gs of the modern cultivar 'Yannong 19' decreased more than the older one 'Nongda 311', indicating the former exhibited higher sensitivity to O3 than the latter. After O3 exposure, PN, gs and chlorophyll (Chl) content in flag leaf decreased more quickly than control, indicating induction of faster premature leaf senescence. As a result, the short-term O3 exposure caused substantial yield loss, with larger reduction in 'Yannong 19' (-19.2 %) than in 'Nongda 311' (-8.4 %). Our results indicated that high O3 exposure at grain filling stage would have greater negative impacts on the high yielding modern cultivar relative to the old one with lower yield. and H. Xu ... [et al.].
In order to investigate the effect of chromosome doubling on ozone tolerance, we compared the physiological responses of a diploid honeysuckle (Lonicera japonica Thunb.) and its autotetraploid cultivar to elevated ozone (O3) exposure (70 ng g-1, 7 h d-1 for 31 d). Net photosynthetic rate (PN) of both cultivars were drastically (P<0.01) impaired by O3. Although there were significantly positive correlation between PN and stomatal conductance (gs) in both cultivars under each treatment, the decreased gs in O3 might be the result rather than the cause of decreased P N as indicated by stable or increasing the ratio of intercellular to ambient CO2 concentration(Ci/Ca). PN under saturating CO2 concentration
(PNsat) and carboxylation efficiency (CE) significantly decreased under O3 fumigation, which indicated the Calvin cycle was impaired. O3 also inhibited the maximum efficiency of photosystem II (PSII) photochemistry in the dark-adapted state (Fv/Fm), actual quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), the maximum in vivo rate of Rubisco carboxylation (Vcmax) and the maximal photosynthetic electron transport rate (Jmax) which demonstrated that the decrease in PN of the honeysuckle exposed to elevated O3 was probably not only due to impairment of Calvin cycle but also with respect to the light-harvesting and electron transport processes. Compared to the diploid, the tetraploid had higher relative loss in transpiration rate (E), (gs), (PNsat), Vcmax and Jmax. This result indicated that the Calvin cycle and electron transport in tetraploid was damaged more seriously than in diploid. A barely nonsignificant (P=0.086) interaction between O3 and cultivar on PN suggested a higher photosynthetic sensitivity of the tetraploid cultivar. and L. Zhang ... [et al.].
Responses of leaf gas exchange, fluorescence emission, chlorophyll concentration, and morpho-anatomical features to changes in photosynthetic photon flux density (PPFD) were studied in three wild ornamental species of Passiflora L. to select sun and shade species for landscaping projects. Artificial shade was obtained with different shading nylon nets, under field conditions, which allowed the reduction of 25, 50, and 75% of global radiation, along with a control treatment under full sunlight. For Passiflora morifolia the highest mean values of light-saturated net photosynthetic rate (PNmax) and light compensation point (LCP) were observed at 50 and 25% shade, respectively, while the highest values of dark respiration rate (RD) and apparent quantum yield (α) were observed at 75% shade. For Passiflora suberosa litoralis the highest value of P max was observed at full sunlight. The highest mean values for Pmax, RD, and LCP for Passiflora palmeri var. sublanceolata were obtained at 25% shade. The highest values of net photosynthetic rate (PN) for P. morifolia, P. palmeri var. sublanceolata, and P. suberosa litoralis were 21.09, 16.15, and 12.36 μmol(CO2) m-2 s-1, observed at 50 and 75% shade and full sunlight, respectively. The values of the minimal chlorophyll fluorescence (F0) were significantly different in P. suberosa litoralis and P. palmeri var. sublanceolata, increasing with the increase of the irradiance. In contrast, the values of maximum photochemical efficiency of PSII (Fv/Fm) were significantly different only in P. suberosa litoralis, being higher at 75%, progressively reducing with the increase of PPFD levels. The total concentration of chlorophyll (Chl) was higher in shaded plants than in the ones cultivated in full sunlight. On the other hand, the values of Chl a/b ratio were reduced in shaded plants. A significant effect of shade levels on leaf area (LA) and specific leaf area (SLA) was found for the three species, whose highest mean values were observed at 75% shade. The thickness of foliar tissues was significantly higher for the three species at full sunlight and 25% shade. These results suggested that P. morifolia and P. palmeri var. sublanceolata appeared to be adapted to moderate shade conditions. P. suberosa litoralis presented higher plasticity to greater variation of the irradiance levels, while the photoinhibition was one of the limiting factors for this species at full sunlight. and M. V. Pires ... [et al.]
The effect of differing environmental conditions on competition for resources was investigated by a comparison of net photosynthetic rate (PN) and vegetative production of Indiangrass [Sorghastrum nutans (L.) Nash.] at two strip mine sites with differing reclamation histories, and a railroad prairie site where this species occurs naturally. The treatment for a competition experiment consisted of tying back all species of neighboring plants around a target plant, and measuring its PN and vegetative performance during the growing season. Environmental variables at each site were also measured during the growing season. Soil bulk density and pH were higher at the two mine sites than at the prairie site, and soil texture, nutrients, and water potential were different at each of the three sites. PN of target plants compared closely among the three sites, and were lowest for plants at the railroad prairie. The competition experiment indicated that lower canopy leaves were most affected by competition for photosynthetically active radiation (PAR) at all sites. Significant differences in PN of upper canopy leaves were found between treatment and control plants at one of the mine sites. This site had higher soil water potentials and higher soil levels of P and K than the other mine site or the railroad prairie. Target plants at the other mine site experienced a low competition for PAR, likely due to lower soil moisture availability and therefore lower aboveground productivity. The largest differences in PN and irradiances between upper and lower canopy leaves occurred in target plants with neighbors at the railroad prairie, likely due to inter-specific competition. Vegetative production of the target plants also reflected the environment at each site, but did not reflect PN differences between treatments. S. nutans is well adapted to the varying environment at these three sites, and aboveground competition for radiant energy was probably not as limiting for this C4 grass as belowground competition. and V. A. Skeel, D. J. Gibson.
Ferns flourish in many habitats, from epiphytic to terrestrial and from sunny to shady, and such varied conditions require contrasting photosynthetic strategies to cope with drought. Four species of temperate ferns from different habitats were subjected to drought by withholding irrigation in order to investigate their photosynthetic responses. Lepisorus thunbergianus (epiphytic) had low stomatal density and showed high water-use efficiency (WUE) retaining photosynthetic activity with low relative frond water content under drought stress, which suggested their high adaptation to drought. On the other hand, low WUE with low light-saturated photosynthetic rate in Adiantum pedatum (terrestrial, shady environment) was associated with much lower photosynthesis than in the other species under drought stress, suggesting lower adaptation to drought-prone habitats. Morphological stomatal traits such as stomatal density and photosynthetic response to drought in ferns involved species-specific adaptation to survive and grow in their natural habitats with different levels of drought., K. Nishida, Y. T. Hanba., and Obsahuje seznam literatury
The poikilochorophyllous, desiccation-tolerant (PDT) angiosperm, Pleurostima purpurea, normally occurs in less exposed rock faces and slightly shady sites. Our aim was to evaluate the light susceptibility of the photosynthetic apparatus during dehydration-rehydration cycle in P. purpurea. In a controlled environment, the potted plants were subjected to water deficit under two different photosynthetic photon flux densities [PPFD, 100 and 400 μmol(photon) m-2 s-1]. In the higher PPFD, net photosynthetic rate (PN) become undetectable after stomata closure but photochemical efficiency of photosystem II, electron transport rate, and photochemical quenching coefficient were maintained relatively high, despite a partial decrease. The photochemical activity was inhibited only after the complete loss of chlorophylls, when leaf relative water content dropped below 72% and total carotenoids reached maximal accumulation. Nonphotochemical energy dissipation increased earlier in response to dehydration under higher PPFD. PN and photochemical activity were fully recovered after rehydration under both light treatments. Our results suggested that the natural occurrence of P. purpurea should not be restricted by the light intensity during the complete desiccation-rehydration cycles., S. T. Aidar, S.T. Meirelles, R. F. Oliveira, A. R. M. Chaves, P. I. Fernandes-Júnior., and Obsahuje bibliografii
Gas exchange, chlorophyll (Chl) fluorescence, and contents of some metabolites in two genotypes of jasmine (Jasminum sambac), single petal (SP) and double petal (DP) one, were analyzed during dehydration and re-hydration. Water stress significantly decreased net photosynthetic rate, stomatal conductance, and maximum photochemical efficiency (Fv/Fm) in both jasmine genotypes, but increased minimum fluorescence (F0) only in DP-jasmine. Water stress also decreased starch content, while increased contents of total soluble sugars and proline in leaves of both genotypes. SP-jasmine demonstrated higher drought tolerance as evidenced by maintaining higher gas exchange and photochemical efficiency and lower alteration of metabolites than DP-jasmine. Recovery analysis revealed that drought-induced injury in photosynthetic machinery in jasmine plants was reversible. DP-jasmine exhibited a slow recovery of drought-induced impairment in photosynthetic activity and associated metabolites, suggesting that this genotype had lower capacity to adapt to water limited condition. Higher yield stability of SP-than that of DP-jasmine under rain-fed condition finally confirmed higher drought tolerance of SP-jasmine. and H. Cai ... [et al.].
Seedlings of Chrysanthemum, cultivar 'Puma Sunny', were grown under a range of shading regimes (natural full sunlight, 55, 25, and 15% of full sunlight) for 18 days. Here, we characterized effects of varying light regimes on plant morphology, photosynthesis, chlorophyll fluorescence, anatomical traits, and chloroplast ultrastructure. We showed that leaf color was yellowish-green under full sunlight. Leaf area, internode length, and petiole length of plants were the largest under 15% irradiance. Net photosynthetic rate, water-use efficiency, PSII quantum efficiency, and starch grain were reduced with decreasing irradiance from 100 to 15%. Heavy shading resulted in the partial closure of PSII reaction centers and the CO₂ assimilation was restricted. The results showed the leaves of plants were thinner under 25 and 15% irradiance with loose palisade tissue and irregularly arranged spongy mesophyll cells, while the plants grown under full sunlight showed the most compact leaf palisade parenchyma. Irradiance lesser than 25% of full sunlight reduced carbon assimilation and led to limited plant growth. Approximately 55% irradiance was suggested to be the optimal for Chrysanthemum morifolium., S. Han, S. M. Chen, A. P. Song, R. X. Liu, H. Y. Li, J. F. Jiang, F. D. Chen., and Obsahuje bibliografii
The spider mite Tetranychus urticae Koch is emerging as a major problem in Jatropha curcas cultivation. The goal of this study was to investigate the photosynthetic responses of Jatropha to spider mite infestation. Leaf CO2 assimilation rate, stomatal conductance, transpiration, intracellular CO2 concentration, and instantaneous carboxylation efficiency significantly decreased in mite-infested leaves compared with controls. Lower water content and specific leaf area of the mite-infested leaves were positively related to symptoms of wrinkling and curling. Leaf electrolyte leakage remained unchanged in the mite-infested leaves, revealing no effect on leaf membrane integrity. Leaves exhibited reductions in soluble protein and soluble sugar in association with photosynthetic impairment. Although decreases in photochemical activity and chlorophyll fluorescence parameters suggested damage to the photosynthetic apparatus, although there were no measurable reductions in chlorophyll or carotenoid contents associated with photosynthetic apparatus impairment. The decrease in the leaf CO2 assimilation rate was partially attributed to stomatal and metabolic limitations in the mite-infested leaves., M.-H. Hsu, C.-C. Chen, K.-H. Lin, M.-Y. Huang, C.-M. Yang, W.-D. Huang., and Obsahuje seznam literatury