The presence of biocrusts changes water infiltration in the Mu Us Desert. Knowledge of the hydraulic properties of biocrusts and parameterization of soil hydraulic properties are important to improve simulation of infiltration and soil water dynamics in vegetation-soil-water models. In this study, four treatments, including bare land with sporadic cyanobacterial biocrusts (BL), lichen-dominated biocrusts (LB), early-successional moss biocrusts (EMB), and latesuccessional moss biocrusts (LMB), were established to evaluate the effects of biocrust development on soil water infiltration in the Mu Us Desert, northwest of China. Moreover, a combined Wooding inverse approach was used for the estimation of soil hydraulic parameters. The results showed that infiltration rate followed the pattern BL > LB > EMB > LMB. Moreover, the LB, EMB, and LMB treatments had significantly lower infiltration rates than the BL treatment. The saturated soil moisture (θs) and shape parameter (αVG) for the EMB and LMB treatments were higher than that for the BL and LB treatments, although the difference among four treatments was insignificant. Water retention increased with biocrust development at high-pressure heads, whereas the opposite was observed at low-pressure heads. The development of biocrusts influences van Genuchten parameters, subsequently affects the water retention curve, and thereby alters available water in the biocrust layer. The findings regarding the parameterization of soil hydraulic properties have important implications for the simulation of eco-hydrological processes in dryland ecosystems.
The biological soil crusts (BSCs) in the NW Negev cause local water redistribution by increasing surface runoff. The effects of pore clogging and swelling of organic and inorganic crust components were intensively investigated in earlier studies. However, the effect of water repellency (WR) was not addressed systematically yet. This study investigates subcritical WR of BSCs in three different study sites in the NW Negev. For this purpose, three common methods to determine soil WR were used: (i) the repellency index (RI) method (ii) the water drop penetration time (WDPT) test and (iii) the Wilhelmy plate method (WPM). Furthermore, the potential influence of WR on local water redistribution is discussed and the applied methods are compared. We found the BSC to be subcritically water repellent. The degree of WR may only affect water redistribution on a microscale and has little influence on the ecosystem as a whole. The RI method was clearly the most appropriate to use, whereas the WDPT and the WPM failed to detect subcritical WR.
The runoff coefficient (RC) is widely used despite requiring to know the effective contributing area, which cannot be known a priori. In a previous work, we defined runoff length (RL), which is difficult to measure. This work aimed to define the minimum RL (mRL), a quantitative and easy proxy of RL, for use in a pilot study on biocrusts in the Tabernas Desert, Spain. We show that RC decreases according to a hyperbola when the contributing area increases, the independent variable being the length of the effective contributing area and its coefficient involving the effects of rainfall and surface features and antecedent conditions. We defined the mRL as the length of the effective contributing area making RC = 1, which is calculated regardless of the area. We studied mRL from three biocrust types and 1411 events clustered in seven categories. The mRL increased with rain volume and intensity, catchment area and slope, whereas plant cover and biocrust succession (with one exception) had a negative effect. Depending on the plot, mRL reached up 3.3–4.0 m on cyanobacterial biocrust, 2.2–7.5 m on the most widespread lichens, and 1.0–1.5 m on late-successional lichens. We discuss the relationships of mRL with other runoff-related parameters.
Accurate estimates of infiltration and groundwater recharge are critical for many hydrologic, agricultural and environmental applications. Anticipated climate change in many regions of the world, especially in tropical areas, is expected to increase the frequency of high-intensity, short-duration precipitation events, which in turn will affect the groundwater recharge rate. Estimates of recharge are often obtained using monthly or even annually averaged meteorological time series data. In this study we employed the HYDRUS-1D software package to assess the sensitivity of groundwater recharge calculations to using meteorological time series of different temporal resolutions (i.e., hourly, daily, weekly, monthly and yearly averaged precipitation and potential evaporation rates). Calculations were applied to three sites in Brazil having different climatological conditions: a tropical savanna (the Cerrado), a humid subtropical area (the temperate southern part of Brazil), and a very wet tropical area (Amazonia). To simplify our current analysis, we did not consider any land use effects by ignoring root water uptake. Temporal averaging of meteorological data was found to lead to significant bias in predictions of groundwater recharge, with much greater estimated recharge rates in case of very uneven temporal rainfall distributions during the year involving distinct wet and dry seasons. For example, at the Cerrado site, using daily averaged data produced recharge rates of up to 9 times greater than using yearly averaged data. In all cases, an increase in the time of averaging of meteorological data led to lower estimates of groundwater recharge, especially at sites having coarse-textured soils. Our results show that temporal averaging limits the ability of simulations to predict deep penetration of moisture in response to precipitation, so that water remains in the upper part of the vadose zone subject to upward flow and evaporation.
Infiltration-outflow experiments were performed on undisturbed soil samples of coarse sandy loam simultaneously with the imaging of flow process by means of magnetic resonance (MR) imaging. The flow in soil under study is highly preferential and exhibits time instability of soil hydraulic properties. For the transient part of infiltration runs, fast 2D imaging was used. For the steady state flow and for the equilibrium state after drainage, horizontal 2D imaging and mapping of longitudinal relaxation (T1) was performed. To obtain the information about internal soil structure all samples were imaged by the computer tomography (CT). The results of all the measurements represent a unique data set. For each sample it contains a record of cumulative infiltration and outflow, hydraulic pressure heads and the simultaneous MR visualization of each particular experiment. Suction pressure heads show a good agreement with the propagation of the wetting front in the sample as displayed by the MR at the very beginning of the each infiltration run. Presented data are the result of first experiment, where MR imaging of infiltration into undisturbed soil samples was combined with concurrent monitoring of suction pressure heads. The next step is to use the gained data for modeling of the infiltration in heterogeneous soil. and Uskutečnili jsme infiltračně výtokový experiment na neporušených vzorcích hlinitopísčité půdy za souběžného snímkování metodou magnetické rezonance (MR). Zkoumaná půda vykazuje výrazné preferenční proudění a časovou závislost hydraulických charakteristik. Pro transientní fáze experimentů jsme použili rychlého vertikálního 2D snímkování. Při ustáleném proudění a při rovnovážném stavu byly pořízeny horizontální 2D snímky a bylo provedeno mapování podélné relaxivity (T1). Pro zjištění vnitřní struktury pevné fáze byly všechny vzorky v suchém stavu snímkovány počítačovou tomografií (CT). Výsledkem experimentu je komplexní soubor dat, který kromě snímků MR obsahuje záznam kumulativní infiltrace výtoku a tlakových výšek. Možnosti metody MR jsou demonstrovány na příkladu porovnání sledu 2D snímků MR s měřenými sacími tlakovými výškami během transientní části infiltrace, kde obě měření shodně zaznamenaly postup čela zvlhčení. Prezentovaná data jsou výsledkem prvního snímkování infiltrace do neporušených vzorků půdy pomocí MR v kombinaci se souběžným měřením sacích tlaků. Dalším krokem bude použití takového souboru dat jako podkladu pro modelování procesu infiltrace do půdy.
Stony soils are composed of fractions (rock fragments and fine soil) with different hydrophysical characteristics. Although they are abundant in many catchments, their properties are still not well understood. This article presents basic characteristics (texture, stoniness, saturated hydraulic conductivity, and soil water retention) of stony soils from a mountain catchment located in the highest part of the Carpathian Mountains and summarizes results of water flow modeling through a hypothetical stony soil profile. Numerical simulations indicate the highest vertical outflow from the bottom of the profile in soils without rock fragments under ponding infiltration condition. Simulation of a more realistic case in a mountain catchment, i.e. infiltration of intensive rainfall, shows that when rainfall intensity is lower than the saturated hydraulic conductivity of the stony soil, the highest outflow is predicted in a soil with the highest stoniness and high initial water content of soil matrix. Relatively low available retention capacity in a stony soil profile and consequently higher unsaturated hydraulic conductivity leads to faster movement of the infiltration front during rainfall.
The Green-Ampt (GA) model is widely used in hydrologic studies as a simple, physically-based method to estimate infiltration processes. The accuracy of the model for applications under rainfall conditions (as opposed to initially ponded situations) has not been studied extensively. We compared calculated rainfall infiltration results for various soils obtained using existing GA parameterizations with those obtained by solving the Richards equation for variably saturated flow. Results provided an overview of GA model performance evaluated by means of a root-meansquare-error-based objective function across a large region in GA parameter space as compared to the Richards equation, which showed a need for seeking optimal GA parameters. Subsequent analysis enabled the identification of optimal GA parameters that provided a close fit with the Richards equation. The optimal parameters were found to substantially outperform the standard theoretical parameters, thus improving the utility and accuracy of the GA model for infiltration simulations under rainfall conditions. A sensitivity analyses indicated that the optimal parameters may change for some rainfall scenarios, but are relatively stable for high-intensity rainfall events.
Knowledge of soil hydraulic and thermal properties is essential for studies involving the combined effects of soil temperature and water input on water flow and redistribution processes under field conditions. The objective of this study was to estimate the parameters characterizing these properties from a transient water flow and heat transport field experiment. Real-time sensors built by the authors were used to monitor soil temperatures at depths of 40, 80, 120, and 160 cm during a 10-hour long ring infiltration experiment. Water temperatures and cumulative infiltration from a single infiltration ring were monitored simultaneously. The soil hydraulic parameters (the saturated water content θ s , empirical shape parameters α and n, and the saturated hydraulic conductivity Ks) and soil thermal conductivity parameters (coefficients b1 , b2 , and b3 in the thermal conductivity function) were estimated from cumulative infiltration and temperature measurements by inversely solving a two-dimensional water flow and heat transport using HYDRUS-2D. Three scenarios with a different, sequentially decreasing number of optimized parameters were considered. In scenario 1, seven parameters (θ s , Ks , α, n, b1 , b2 , and b3) were included in the inverse problem. The results indicated that this scenario does not provide a unique solution. In scenario 2, six parameters (Ks , α, n, b1 , b2 , and b3) were included in the inverse problem. The results showed that this scenario also results in a non-unique solution. Only scenario 3, in which five parameters (α, n, b1 , b2 , and b3) were included in the inverse problem, provided a unique solution. The simulated soil temperatures and cumulative infiltration during the ring infiltration experiment compared reasonably well with their corresponding observed values.
Detailed data on the long-term performance of bioretention cells (BC) for stormwater management are sparse. This research aimed at setting up and testing an infrastructure that will provide the data on hydrologic and chemical performance of BC. Two identical experimental BC’s were built. The monitoring methodology monitoring was developed and tested during a first growing season with the first BC supplied with natural rainfall, while the second BC was used for ponding experiments. Key layer of the BCs, a biofilter, was composed of sand, compost and topsoil. Both BCs are equipped with sensors monitoring the components of water balance and the water potential of the biofilter. High levels of total suspended solids were detected in the outflow. The runoff coefficient for the entire period of the growing season was 0.72 in the first BC and 0.86 in the second BC, while the peak outflow reduction for individual rainfall episodes ranged between 75% to 95% for the first BC and 19% to 30% for the second BC. Saturated hydraulic conductivity of the biofilter in the first BC decreased by two orders of magnitudes after the first year of operation. Retention curves of the biofilter changed due to material consolidation.
In arid and semiarid regions where water is the main limiting factor, water redistribution is regarded as an important hydrological process of great ecological value. By providing additional water to certain loci, moist pockets of great productivity are formed, characterized by high plant biomass and biological activity. These moist pockets are often a result of runon. Yet, although runoff may take place on semi-flat undulating surfaces, runoff measurements are thus far confined to slopes, where a sufficient gradient facilitates downslope water harvesting. On undulating surfaces of mounds and depressions, such as in interdunes, no quantification of the amount of water reaching depressions is feasible due to the fact that no reliable method for measuring the runoff amounts in semi-flat terrains is available. The current paper describes specific runoff plots, designed to measure runoff in depressions (sinks). These plots, termed sink plots (SPs), were operative in the Hallamish dunefield (Negev Desert, Israel). The paper presents measurements of runoff yield that were carried out between January 2013 and January 2014 on SPs and compared them to runoff obtained from crusted slope plots and fine-grained (playa) surfaces. The potential hydrological and ecological implications of water redistribution within semi-flat terrains for this and other arid ecosystems are discussed.