Wheat (Triticum aestivum L.) cv. Jimai22 was used to evaluate the effect of ethylene evolution rate (EER) and 1-aminocyclopropane-1-carboxylic acid (ACC) and their relations with photosynthesis and photochemical efficiency in plants well-watered (WW) and under a severe water deficit (SWD). SWD caused a noticeable reduction in the grain mass. The marked increases in both EER and the ACC concentration were observed under SWD; it was reversed effectively by exogenous spermidine (Spd) or amino-ethoxyvinylglycine (AVG). Thermal images indicated that SWD increased obviously the temperature of flag leaves, mainly due to the decrease in transpiration rate under SWD. Exogenous Spd or AVG decreased to some extent the temperature of the flag leaves. The strong decline in photosynthetic rate (PN) and stomatal conductance as well as the photodamage of PSII were also observed under SWD after 14 and 21 days after anthesis (DAA). Intercellular CO2 concentration was reduced at 7 DAA, but slightly increased at 14 and 21 DAA under SWD, indicating that the decreased PN at 7 DAA might result from stomatal limitations, while the decline after 14 and 21 DAA might be attributed to nonstomatal limitations. Correlation analysis suggested that EER and ACC showed negative relations to photosynthesis and photochemical efficiency. Data obtained suggested that the effects of SWD were mediated predominantly by the increase in EER and ACC concentration, which greatly decreased the leaf photosynthesis and photochemical efficiency, and, therefore, reduced the grain mass. Application of Spd or AVG reduced the EER and ACC, and thus positively influenced photosynthesis and photochemical efficiency under SWD., W. Yang, Y. Yin, W. Jiang, D. Peng, D. Yang, Y. Cui, Z. Wang., and Obsahuje bibliografii
Among the most extended ecosystems of the temperate zone, the seminatural, dry grasslands constitute a substantial proportion in the Carpathian Basin. The aim of our present study was to investigate the short-term effect of extensive fertilization on the species composition and CO2 exchange of loess grassland at community level. The in situ investigation of the latter parameter have not been yet carried out in Pannonian loess grasslands. Most of the parameters studied showed a considerable interannual variation both in the fertilized and in the control stands. As a result of the treatment, the average species number of the fertilized stand decreased by 22%, which was more significant in the autumn (26%) than in the spring. Diversity values, including Shannon index and species richness, increased by nearly 1.5 times in the year with adequate rainfall compared with the initial values. In general, species richness and the ratio of dicots decreased, while the ratio of therophytes, alien competitors, and C4 plants increased with the addition of fertilizers. Significant carbon sequestration potential was only detected during wet periods in the fertilized grass. The rate of CO2 uptake was found to be nearly five times higher in the fertilized stand and nearly three times higher in the control stand during the wet year compared with the previous, extremely dry year. The CO2 uptake potential of the fertilized grassland exceeded that of the control stand by 12% in the year with high rainfall, while the rate of CO2 exchange dropped by 50% in the dry year in the fertilized stand. Our study reinforced the idea that the decline in species richness was not necessarily followed by the reduction of stand level carbon uptake in a short period due to an insignificant change in ecophysiological functional groups. and S. Z. Czóbel ... [et al.].
Cuttings of Populus cathayana were exposed to three different alkaline regimes (0, 75, and 150 mM Na2CO3) in a semicontrolled environment. The net photosynthesis rate (PN), mesophyll conductance (gm), the relative limitations posed by stomatal conductance (Ls) and by mesophyll conductance (Lm), photosynthetic nitrogen-use efficiency (PNUE), carbon isotope composition (δ13C), as well as specific leaf area (SLA) were measured. PN decreased due to alkaline stress by an average of 25% and gm decreased by an average of 57%. Alkaline stress caused an increase of Lm but not Ls, with average Ls of 26%, and Lm average of 38% under stress conditions. Our results suggested reduced assimilation rate under alkaline stress through decreased mesophyll conductance in P. cathayana. Moreover, alkaline stress increased significantly δ13C and it drew down CO2 concentration from the substomatal cavities to the sites of carboxylation (Ci-Cc), but decreased PNUE. Furthermore, a relationship was found between PNUE and Ci-Cc. Meanwhile, no correlation was found between δ13C and Ci/Ca, but a strong correlation was proved between δ13C and Cc/Ca, indicating that mesophyll conductance was also influencing the 13C/12C ratio of leaf under alkaline stress. and G. Xu ... [et al.].
Chlorophyll fluorescence serves as a proxy photosynthesis measure under different climatic conditions. The objective of the study was to predict PSII quantum yield using greenhouse microclimate data to monitor plant conditions under various climates. Multilayer leaf model was applied to model fluorescence emission from actinic light-adapted (F') leaves, maximum fluorescence from light-adapted (Fm') leaves, PSII-operating efficiency (Fq'/Fm'), and electron transport rate (ETR). A linear function was used to approximate F' from several measurements under constant and variable light conditions. Model performance was evaluated by comparing the differences between the root mean square error (RMSE) and mean square error (MSE) of observed and predicted values. The model exhibited predictive success for Fq'/Fm' and ETR under different temperature and light conditions with lower RMSE and MSE. However, prediction of F' and Fm' was poor due to a weak relationship under constant (R2 = 0.48) and variable (R2 = 0.35) light., E. Janka, O. Körner, E. Rosenqvist, C.-O. Ottosen., and Obsahuje bibliografii
To investigate how bisulfite promotes photosynthesis, a pot experiment was conducted with rice (Oryza sativa L.) plants to determine Rubisco activity and content, and Rubisco activase (RCA) gene expression after spraying NaHSO3 on rice leaves. The NaHSO3 treatment promoted significantly net photosynthetic rate (PN), carboxylation efficiency, maximum carboxylation rate, ribulose-1,5-bisphosphate regeneration rate, initial Rubisco activity, and RCA protein and mRNA concentrations. Therefore, the NaHSO3 enhancement of PN could be directly attributed to induction of RCA gene expression both at the transcription and translation levels. Thus, the increased RCA regulated the initial Rubisco activity in vivo., Y. Chen, J.-H. Jin, Q.-S. Jiang, C.-L. Yu, J. Chen, L.-G Xu, D.-A. Jiang., and Obsahuje bibliografii
Soil metal contamination leads to a decrease in a yield of crops and is a threat to human health. In the present study, the properties (i.e., photosynthetic pigments, gas-exchange parameters, chlorophyll fluorescence, biomass, leaf area, leaf mass per area) of three green vegetables (i.e., Brassica chinensis, Chrysanthemum coronarium, Brassica alboglabra) grown under various Cu treatments [0, 200, 400, and 600 mg(Cu) kg-1] were measured and analysed. The results showed that soil Cu contamination resulted in the damage of photosynthetic pigments, negative effects on gas exchange, and hampered growth of all three vegetables. However, it did not significantly influence PSII functions of the three vegetables. It indicates that soil Cu contamination negatively affected photosynthesis particularly due to stomatal factors, but not due to the damage of photosynthetic apparatus., M.-Z. Lin, M.-F. Jin., and Obsahuje bibliografii
Gloiopeltis furcata (Postels & Ruprecht) J. Agardh, a macroalga, which grows in an upper, intertidal zone, can withstand drastic environmental changes caused by the periodic tides. In this study, the photosynthetic and morphological characteristics of G. furcata were investigated. The photosynthetic performance and electron flows of the thalli showed significant variations in response to desiccation and salinity compared with the control group. Both PSII and PSI activities declined gradually when the thalli were under stress. However, the electron transport rate of PSI showed still a low value during severe conditions, while the rate of PSII approached zero. Furthermore, PSI activity of the treated thalli recovered faster than PSII after being submerged in seawater. Even though the linear electron flow was inhibited by DCMU [3-(3, 4-dichlorophenyl)-1,1-dimethylurea], the cyclic electron flow could still be restored. The rate of cyclic electron flow recovery declined with the increasing time of dark treatment, which suggested that stromal reductants from starch degradation played an important role in the donation of electrons to PSI. This study demonstrated that PSII was more sensitive than PSI to desiccation and salinity in G. furcata and that the cyclic electron flow around PSI played a significant physiological role. In addition, G. furcata had branches, which were hollow inside and contained considerable quantities of funoran. These might be the most important factors in allowing G. furcata to adapt to adverse intertidal environments., L. Huan, S. Gao, X. J. Xie, W. R. Tao, G. H. Pan, B. Y. Zhang, J. F. Niu, A. P. Lin, L. W. He, G. C. Wang., and Obsahuje bibliografii
In juvenile trees growing at the rainforest understory, light is the most limiting factor for growth. It has been assumed that stomata quickly respond to light irrespective of the physical conditions prevailing before leaf illumination. Nevertheless, so far this issue has not been addressed for saplings of Amazonian tree species. The aim of this study was to determine how stomatal conductance (gs) and photosynthetic parameters of Amazonian saplings respond to diurnal variation in the physical environment and to rainfall seasonality. Light-saturated net photosynthetic rate (PNmax) and gs at light saturation (gsmax) were measured in the dry (August) and rainy (January) season of 2008 in saplings of 10 Amazonian tree species (Minquartia guianensis, Myrcia paivae, Protium apiculatum, Guatteria olivacea, Unonopsis duckei, Rinorea guianensis, Dicypellium manausense, Eschweilera bracteosa, Gustavia elliptica, and Tapura amazonica). At the forest understory, variables of the physical environment were measured. Rainfall seasonality did not affect PNmax and gsmax, nor was the effect of species on PNmax and gsmax significant (p>0.05). The gs and PNmax increased as the forest understory became brighter and warmer; as a result, PNmax and gsmax were higher at midday than early in the morning or in the afternoon. However, contrary to expectations, neither changes in air vapor pressure deficit nor air CO2 concentration at the forest understory affected stomatal opening. More investigation is needed to elucidate the role of environmental factors in modulating stomatal movements in juvenile trees growing beneath the dense canopy of tropical rainforests., R. A. Marenco, H. C. S. Nascimento, N. S. Magalhães., and Obsahuje bibliografii
Nitrogen is an essential factor for normal plant and algal development. As a component of nucleic acids, proteins, and chlorophyll (Chl) molecules, it has a crucial role in the organization of a functioning photosynthetic apparatus. Our aim was to study the effects of nitrogen starvation in cultures of the unicellular green alga, Chlamydomonas reinhardtii, maintained on nitrogen-free, and then on nitrogen-containing medium. During the three-week-long degreening process, considerable changes were observed in the Chl content, the ratio of Chl-protein complexes, and photosynthetic activity of the cultures as well as in the ultrastructure of single chloroplasts. The regreening process was much faster then the degradation; total greening of the cells occurred within four days. The rate of regeneration depended on the nitrogen content. At least 50% of the normal nitrogen content of Tris-Acetate-Phosphate (TAP) medium was required in the medium for the complete regreening of the cells and regeneration of chloroplasts., É. Preininger, A. Kósa, Z. S. Lőrincz, P. Nyitrai, J. Simon, B. Böddi, Á. Keresztes, I. Gyurján., and Obsahuje seznam literatury
The specific features of the structural and functional organisation of the photosynthetic apparatus (PSA) were studied in wild halophytes representing three strategies of salt tolerance: euhalophyte Salicornia perennans, crynohalophyte Limonium gmelinii, and glycohalophyte Artemisia santonica. The sodium content in aboveground parts of the plants corresponded to the strategy of salt tolerance. The photosynthetic cells of the euhalophyte were large and contained a higher number of chloroplasts than those in other species. In contrast, the number of cells per a leaf area unit was lower in S. perennans as compared to cryno- and glycohalophytes. Thereupon, the cell and chloroplast surface area per leaf area unit declined in the following sequence: A. santonica > L. gmelinii > S. perennans. However, the large cells of euhalophyte contained chloroplasts of larger sizes with 4- to 5-fold higher chlorophyll (Chl) content per chloroplast and Chl concentration in chloroplast volume unit. Also, chloroplasts of S. perennans were characterised by the higher content of glyco- and phospholipids. Qualitative composition of fatty acids (FA) in lipids isolated from the chloroplast-enriched fraction was similar in all three species; however, the index of unsaturation of FA was higher in glycohalophyte A. santonica than those in two other species. Under natural condition, PSA of all three halophytes showed high resistance to soil salinity. The results indicated tolerance of PSII to the photodamage in halophytes. The high rate of electron transport through PSII can be important to prevent oxidative damage of PSA in halophytes under strong light and hight temperature in vivo. Thus, the strategy of salt tolerance is provided by both the leaf anatomical structure and the ultrastructure of photosynthetic membranes, which is determined in particular by the specific composition of lipids., O. A. Rozentsvet, E. S. Bogdanova, L. A. Ivanova, L. A. Ivanov, G. N. Tabalenkova, I. G. Zakhozhiy, V. N. Nesterov., and Seznam literatury