In order to study the responses of winter wheat cultivars released in different years to short-term high O3 exposure, an old cultivar ('Nongda 311', released in 1960s) and a modern one ('Yannong 19', released in 1990s) were treated with an O3 exposure (145 ± 12 mm3 m-3, 4 h d-1 for 3 d) shortly after anthesis stage (> 50 % main stems blossomed). During the O3 exposure, light-saturated photosynthetic rate (PN) and stomatal conductance (gs) of both cultivars decreased considerably. Elevated O3 did not decrease dark-adapted maximum photochemical efficiency, but induced significant reduction in actual photochemical efficiency and thereby considerably increase in non-photochemical quenching. PN, gs of the modern cultivar 'Yannong 19' decreased more than the older one 'Nongda 311', indicating the former exhibited higher sensitivity to O3 than the latter. After O3 exposure, PN, gs and chlorophyll (Chl) content in flag leaf decreased more quickly than control, indicating induction of faster premature leaf senescence. As a result, the short-term O3 exposure caused substantial yield loss, with larger reduction in 'Yannong 19' (-19.2 %) than in 'Nongda 311' (-8.4 %). Our results indicated that high O3 exposure at grain filling stage would have greater negative impacts on the high yielding modern cultivar relative to the old one with lower yield. and H. Xu ... [et al.].
The study was carried out in a four-year-old super-high density olive grove in Central Italy to compare leaf gas exchanges of Spanish Arbequina and Italian Maurino olive cultivars. Overall, from mid July to mid November, Maurino had a slightly higher maximum
light-saturated net photosynthetic rate (PNmax) than Arbequina. The lowest and the highest PNmax values were recorded at the end of July and in mid November, respectively. Current-season leaves showed similar or slightly higher PNmax values than one-year-old leaves. During the day Maurino always had slightly higher values or values similar to Arbequina, with the highest PNmax being in the morning. Maurino had similar or higher dark respiration rate (RD) values compared to Arbequina. During the day, in both cultivars the RD was lower at 9:00 than in the afternoon. The pattern of the photosynthetic irradiance-response curve was similar in the two genotypes, but the apparent quantum yield (YQ) was higher in Maurino. In both cultivars intercellular CO2 concentration (Ci) tended to increase when PNmax decreased. The increase in Ci corresponded to a decrease in stomatal conductance (gs). The transpiration rate (E) increased from mid July to the beginning of August, then decreased in September and increased again in November. Particularly in the morning, the current-season leaves showed similar or slightly higher E values than the one-year-old leaves. During the day, in both cultivars and at both leaf ages, E was higher in the afternoon. No effects on leaf gas exchanges due to the presence or absence of fruit on the shoot were found. Overall, there was satisfactory physiological adaptation for Arbequina to the conditions of Central Italy and for Maurino to the superintensive grove conditions., P. Proietti, L. Nasini, and L. Ilarioni., and Obsahuje bibliografii
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (ΨW) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only. and S. Ramanjulu ... [et al.].
Unlike mulberry (Morus alba, M.a.), paper mulberry (Broussonetia papyrifera, B.p.) can acclimate to Karst soil and incline to alien invasion. The photosynthetic parameters, diurnal changes of carbonic anhydrase, and chlorophyll fluorescence induction, and water potential were measured on sunny days (SD) and cloudy days (CD). Photosynthetic midday depression occurred in B.p. but not in M.a. The irradiance-and CO2-saturated photosynthetic rates of B.p. were significantly higher than those of M.a. There was no significant difference in water use efficiency between the two species on a SD. The maximum fluorescence, maximum quantum yield, photochemical quenching, and relative electron transport rate in the leaves of B.p. were much higher than those in M.a. The activity of carbonic anhydrase (CA) of B.p., on either an SD or a CD, was much greater than that of M.a. Higher transpiration rate (E) and net photosynthetic rate (PN) of B.p. resulted in the lack of water in mesophyll cells. Although a higher CA activity of B.p. supplied both water and CO2 for the photosynthesis of mesophyll cells, water in mesophyll cells was the factor limiting photosynthesis, and the intercellular CO2 concentration of B.p. was high and stable. and Y.-Y. Wu ... [et al.].
To elucidate whether dipterocarp species, dominant late-successional species of tropical forests in Southeast Asia, actually have a disadvantage when planted on open site in terms of their photosynthetic characteristics, we investigated photosynthesis in dipterocarp seedlings planted in the open on degraded sandy soils in southern Thailand. These species were compared with seedlings of Acacia mangium Willd., a fast-growing tropical leguminous tree, which is often planted on degraded open site in Southeast Asia. The dipterocarp seedlings had an irradiance-saturated net photosynthetic rate (PN), stomatal conductance (gs), carboxylation efficiency, and photosynthetic capacity comparable to or superior to those of A. mangium. In particular, seedlings of Dipterocarpus obtusifolius Teijsm. ex Miq. showed an irradian-ce-saturated PN of 21 µmol m-2 s-1, a value higher than any previously reported for a dipterocarp species, accompanied by high gs (0.7 mol m-2 s-1) and high photosynthetic capacity. Thus dipterocarp species do not necessarily have a disadvantage in terms of their photosynthetic characteristics on open sites with degraded sandy soils. and M. Norisada, K, Kojima.
Photosynthetic characteristics were compared between plants of low altitude (LA) grown at LA (Palampur; 1 300 m) and at high altitude, HA (Kibber; 4 200 m), and plants naturally occurring at different altitudes (Palampur, 1 300 m; Palchan, 2 250 m; and Marhi, 3 250 m). Net photosynthetic rate (PN) was not significantly different between altitudes. However, the slopes of the curve relating PN to intercellular CO2 concentration (Ci) were higher in plants at Palchan, Marhi, and Kibber compared to those at Palampur, indicating that plants had higher efficiency of carbon uptake (the initial slope of PN/Ci curve is an indication) at HA. They had also higher stomatal conductance (gs), transpiration rate, and lower water use efficiency at HA. gs was insensitive to photosynthetic photon flux density (PPFD) for plants naturally occurring at Palampur, Palchan, and Marhi, whereas plants from LA grown at Palampur and Kibber responded linearly to increasing PPFD. Insensitivity of gs to PPFD could be one of the adaptive features allowing wider altitudinal distribution of the plants. and N. Kumar, S. Kumar, P.S. Ahuja.
Photosynthetic parameters were studied in Arbutus unedo L. trees growing at either ambient (AC) or elevated EC (mean 465 µmol mol-1) CO2 concentration near a natural CO2 vent in Orciatico, Italy Diurnal courses of net photosynthetic rate (PN), ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), and quantum yield of electron transport through photosystem 2 (Φ2) were measured on sun and shade leaves. The contents of N, C, Ca, K, P, and chlorophyll (Chl) and specific leaf area (SLA) in these leaf categories were also determined. A morning peak and midday depression of PN were found for both AC and EC sun leaves. Long-term EC caused little or no down-acclimation of PN in sum leaves. The estimate of total daily CO2 uptake was lower in AC leaves than in EC leaves. In shade leaves, it reached up to 70 % of the value of sun leaves. The Fv/Fm ratio showed decreasing trend in the morning, reached a minimum at midday (90 % of dawn value), and then increased in the afternoon. The EC had no effect on Fv/Fm either in sun or shade leaves. Plants grown near the CO2 spring had lower Chl content, higher SLA, and higher Ca and K contents than plants grown under AC. and M. Barták, A. Raschi, R. Tognetti.
Responses of photosynthetic gas exchange and chlorophyll (Chl) a fluorescence of three wild soybeans, Glycine soja, G. tomentella, and G. tabacina occurring in different habitats of Taiwan, to four NaCl treatments, 0S, LS, MS, and HS (i.e. 0, 17, 51, and 85 mM NaCl) were compared. In G. soja following exposure to NaCl treatment for one month, the photon saturated photosynthetic rate (PN), the ratio of variable to maximum fluorescence (Fv/Fm), the quantum yield of photosystem 2 (ΦPS2), and the electron transport rate (ETR) decreased dramatically. These reductions increased with increasing concentration of NaCl treatment. Plants of MS and HS treatments did not survive after extending the treatment to two months. Reductions in PN, ΦPS2, and ETR (but not in Fv/Fm) were found in G. tabacina after two months of exposure to MS and HS treatments, but the reduction was not as severe as that in G. soja. In G. tomentella, significant reductions in PN and gs were found only in HS plants after two months of treatment, but no significant differences in Fv/Fm, ΦPS2, and ETR were found among plants of the four treatments. Thus the three wild soybeans in Taiwan have differentiated in their photosynthetic susceptibility to salinity, G. tomentella being the least susceptible, G. soja the most sensitive, and G. tabacina the intermediate. Different mechanisms are attributed to the inhibition effect of salinity on photosynthesis of the three species. and W. Y. Kao, T. T. Tsai, C. N. Shih.
We compared the photosynthetic traits in response to soil water availability in an endangered plant species Mosla hangchowensis Matsuda and in a weed Mosla dianthera (Buch.-Ham.) Maxim. The highest diurnal mean net photosynthetic rate (PNmean), stomatal conductance (gs), and water use efficiency (WUE) of both species occurred at 60 % soil water holding capacity (WHC), while the lowest values occurred at 20 % WHC. The PNmean, gs, and chlorophyll (Chl) a and b contents of M. hangchowensis were lower than those of M. dianthera, while the physiological plasticity indices were higher than those of M. dianthera. M. hangchowensis had strong adaptability to the changing soil water status but weak extending population ability in its habitats because of the low PNmean, which may be one of the causes of its endangerment. and Y. Ge ... [et al.].
Morphological, anatomical and physiological frond traits of Cheilanthes persica (Bory) Mett. ex Kuhn were studied to analyze its adaptive strategy. Mean frond life span is about 340 d. Mature fronds are characterized by 91 g m-2 areal dry mass (ADM) and 217 g m-2 succulence. The reduction of frond water content in July (dehydration phase) caused a 51 % decrease in frond surface area (SA). Fronds were dry in August (desiccation phase); nevertheless, in September they showed an increased SA (rehydration phase). Chlorophyll (Chl) a/b ratio, above 3, and the well developed palisade parenchyma (two layers, total thickness of 103.9 µm) are typical for sun leaves. Chl and carotenoid contents and net photosynthetic rate (PN) increased during frond development until the highest values in April-May (maturity phase). When mean air temperature reached 31.3 °C, stomatal conductance (gs) decreased by 34 % and PN by 33 %. The high pigment contents can dissipate the excess of radiant energy, particularly under unfavourable conditions, when PN is low. Rather high PN was found during the rehydration stage. The pronounced decline of mesophyll activity during the declining phase was confirmed by the lowest PN. and L. Gratani, M. F. Crescente, G. Rossi.