The interactive effect of elevated CO2 (EC) and moisture stress (MS) on Brassica juncea cv. Pusa Bold was studied using open-top chambers. The EC markedly increased net photosynthetic rate and internal CO2 concentration and reduced variable and maximal chlorophyll fluorescence. Under MS, EC increased water potential and relative water content, and reduced transpiration rate. The greater allocation of biomass to the roots, which serve as a strong sink for assimilated carbon under EC, helped in better root growth. and B. K. Rabha, D. C. Uprety.
Nitric oxide (NO) is an important signalling molecule with diverse physiological functions in plants. In plant cell, it is synthesised in several metabolic ways either enzymatically or nonenzymatically. Due to its high reactivity, it could be also cytotoxic in dependence on concentration. Such effects could be also mediated by NO-derived compounds. However, the role of NO in photosynthetic apparatus arrangement and in photosynthetic performance is poorly understood as indicated by a number of studies in this field with often conflicting results. This review brings a short survey of the role of exogenous NO in photosynthesis under physiological and stressful conditions, particularly of its effect on parameters of chlorophyll fluorescence. and D. Procházková ... [et al.].
Our study investigated the physiological and biochemical basis for the effects of exogenous phenolic acids on the function of the photosynthetic apparatus and photosynthetic electron transport rate in strawberry seedlings. Potted seedlings of the strawberry (Fragaria × ananassa Duch.) were used. Syringic acid inhibited net photosynthetic rate and water-use efficiency decreased. Additionally, primary quinone electron acceptor of the PSII reaction centre, the PSII reaction centre and the oxygen evolving complex were also impaired. Both the maximum quantum yield of the PSII primary photochemistry and the performance index on absorption basis were depressed, resulting in reduced function of the photosynthetic electron transport chain. Otherwise, low phthalic acid concentrations enhanced photosynthetic capacity, while high concentrations showed opposite effects. Syringic acid exhibited a higher toxic effect than that of phthalic acid which was more evident at higher concentrations., X. F. Lu, H. Zhang, S. S. Lyu, G. D. Du, X. Q. Wang, C. H. Wu, D. G. Lyu., and Obsahuje bibliografii
In this study, we chose apple leaf as plant material and studied effects of GeO2 on operation of photosynthetic apparatus and antioxidant enzyme activities under strong light. When exogenous GeO2 concentration was below 5.0 mg L-1, maximum photochemical quantum yield of PSII and actual quantum yield of PSII photochemistry increased significantly compared with the control under irradiances of 800 and 1,600 μmol(photon) m-2 s-1. Photosynthetic electron transport chain capacity between QA-QB, QA-PSI acceptor, and QB-PSI acceptor showed a trend of rising up with 1.0, 2.0, and 5.0 mg(GeO2) L-1 and declining with 10.0 mg(GeO2) L-1. On the other hand, dissipated energy via both ΔpH and xanthophyll cycle decreased remarkably compared with the control when GeO2 concentration was below 5.0 mg L-1. Our results suggested that low concentrations of GeO2 could alleviate photoinhibition and 5.0 mg(GeO2) L-1 was the most effective. In addition, we found, owing to exogenous GeO2 treatment, that the main form of this element in apple leaves was organic germanium, which means chemical conversion of germanium happened. The organic germanium might be helpful to allay photoinhibition due to its function of scavenging free radicals and lowering accumulation of reactive oxygen species, which was proven by higher antioxidant enzyme activities., Z. B. Wang, Y. F. Wang, J. J. Zhao, L. Ma, Y. J. Wang, X. Zhang, Y. T. Nie, Y. P. Guo, L. X. Mei, Z. Y. Zhao., and Obsahuje bibliografii
The ecophysiological function(s) and consequences of guttation, a phenomenon by which water is exuded by and accumulated as droplets along the leaf margins under high humidity in many plants that grow in wet soil, has been poorly studied and remains largely unknown. Thus, leaf gas exchange and chlorophyll fluorescence were examined, using two experimental approaches, in Alchemilla mollis plants under conditions that promoted guttation and those that prevented this phenomenon. Although results were variable, depending on the experimental approach, prevention of guttation effected reductions in photosynthesis and transpiration, as well as photochemical activity measured with fluorescence techniques. These findings lend partial support for a previously hypothesized function of guttation: prevention of excess water in leaves, yet they contradict those of several other studies. More work is required in order to adequately understand the function of guttation., Y.-C. Chen, T.-C. Lin, C. E. Martin., and Obsahuje bibliografii
Plants grown at low irradiance were fertilized with 0, 60, and 600 g m-3 NH4NO3 once every fortnight. Plants treated with high N concentrations showed an increased growth, producing longer and broader fronds with larger areas, and were darker green in colour. Nitrogen also increased the content of chlorophyll (Chl) and carotenoids per leaf area unit. Different N treatments did not affect the photosynthetic efficiency of photosystem 2, as reflected by the high values of Chl fluorescence kinetics Fv/Fm, ranging between 0.81 to 0.84, and Fv/F0 of 4.30 to 5.10. An increase in photochemical quenching (qP), accompanied by a decrease in non-photochemical quenching (qN), was observed in sporophytes fertilized with increased concentrations of NH4NO3. Nitrogen availability allowed sporophytes of Acrostichum aureum to become more established under natural conditions. and R. S. Pillai, B.-L. Ong.
In this study, effects of yellow (Y), purple (P), red (R), blue (B), green (G), and white (W) light on growth and development of tobacco plants were evaluated. We showed that monochromatic light reduced the growth, net photosynthetic rate (PN), stomatal conductance, intercellular CO2, and transpiration rate of tobacco. Such a reduction in PN occurred probably due to the stomatal limitation contrary to plants grown under W. Photochemical quenching coefficient (qP), maximal fluorescence of dark-adapted state, effective quantum yield of PSII photochemistry (ΦPSII), and maximal quantum yield of PSII photochemistry (Fv/Fm) of plants decreased under all monochromatic illuminations. The decline in ΦPSII occurred mostly due to the reduction in qP. The increase in minimal fluorescence of dark-adapted state and the decrease in Fv/Fm indicated the damage or inactivation of the reaction center of PSII under monochromatic light. Plants under Y and G showed the maximal nonphotochemical quenching with minimum PN compared with the W plants. Morphogenesis of plants was also affected by light quality. Under B light, plants exhibited smaller angles between stem and petiole, and the whole plants showed a compact type, while the angles increased under Y, P, R, and G and the plants were of an unconsolidated style. The total soluble sugar content increased significantly under B. The reducing sugar content increased under B but decreased significantly under R and G compared with W. In conclusion, different monochromatic light quality inhibited plants growth by reducing the activity of photosynthetic apparatus in plants. R and B light were more effective to drive photosynthesis and promote the plant growth, while Y and G light showed an suppression effect on plants growth. LEDs could be used as optimal light resources for plant cultivation in a greenhouse., L. Y. Yang, L. T. Wang, J. H. Ma, E. D. Ma, J. Y. Li, M. Gong., and Obsahuje bibliografii
Three-years-old trees of Satsuma mandarin (Citrus unshiu [Mak.] Marc.) cv. Okitsu were exposed to O3 fumigation during long term (one year) in open-top chambers. As a result of the treatment, chlorophyll a fluorescence and gas exchange parameters were modified with respect to trees growing in O3-free conditions. Net photosynthetic rate and stomatal conductance decreased and intercellular CO2 concentration increased according to a reduction of the non-cyclic electron flow and a lower capacity to reduce the quinone pool. O3 also reduced the development of non-photochemical quenching preventing the dissipation of excess excitation energy and, therefore, generated several alterations in photosynthetic apparatus. All these effects were obtained in long-term exposure and higher O3 concentration. In O3 ambient conditions, the effects were minor. and A. Calatayud ... [et al.].
In order to investigate the effects of low irradiation (LI) on cucumber (Cucumis sativus L. cv. Jinyou 35) during a ripening stage, our experiment was carried out in a climate chamber. Two levels of PAR were set for plants: normal irradiation [NI, 600 μmol(photon) m-2 s-1] and low irradiation [LI, 100 μmol(photon) m-2 s-1], respectively. The experiments lasted for 9 d; then both groups of plants were transferred under NI to recover for 16 d. The plants showed severe chlorosis after the LI treatment. Chlorophyll (Chl) a, initial slope, photosynthetic rate at saturating irradiation (P max), light saturation point, maximal photochemical efficiency of PSII (Fv/Fm), electron transport rate of PSII (ETR), soluble protein content, and catalase (CAT) activity in cucumber leaves decreased under LI stress, while Chl b, carotenoids, light compensation point, nonphotochemical quenching (qN), superoxide dismutase (SOD), and malondialdehyde (MDA) exhibited an increasing trend under LI. After 16 d of recovery, values of P max, Fv/Fm, ETR, qN, SOD, CAT, MDA, and soluble protein were close to those of the control after one, three, and five days of the LI treatment, while those kept under LI for 7 and 9 d could not return to the control level. Therefore, 7 d of LI stress was a meteorological disaster index for LI in cucumber at the fruit stage., Z. Q. Yang, C. H. Yuan, W. Han, Y. X. Li, F. Xiao., and Obsahuje seznam literatury
The effects of NaCl stress on the growth and photosynthetic characters of Ulmus pumila L. seedlings were investigated under sand culture condition. With increasing NaCl concentration, main stem height, branch number, leaf number, and leaf area declined, while Na+ content and the Na+/K+ ratio in both expanded and expanding leaves increased. Na+ content was significantly higher in expanded leaves than in those just expanding. Chlorophyll (Chl) a and Chl b contents declined as NaCl concentration increased. The net photosynthetic rate, intercellular CO2 concentration, stomatal conductance, and transpiration rate also declined, but stomatal limitation value increased as NaCl concentration increased. Both the maximal quantum yield of PSII photochemistry and the effective quantum yield of PSII photochemistry declined as NaCl concentration rose. These results suggest that the accumulation of Na+ in already expanded leaves might reduce damage to the expanding leaves and help U. pumila endure high salinity. The reduced photosynthesis in response to salt stress was mainly caused by stomatal limitation., Z. T. Feng, Y. Q. Deng, H. Fan, Q. J. Sun, N. Sui, B. S. Wang., and Obsahuje bibliografii