Leaf chloroplast ultrastructure and photosynthetic properties of a natural, yellow-green leaf mutant (ygl1) of rice were characterized. Our results showed that chloroplast development was significantly delayed in the mutant leaves compared with the wild-type rice (WT). As leaves matured, more grana stacks formed concurrently with increasing leaf chlorophyll (Chl) content. Except for the lower intercellular CO2 concentration, the ygl1 plants had a higher leaf net photosynthetic rate, stomatal conductance, and transpiration rate than those of the WT plants. Under equal amounts of Chl, the excitation energy of PSI and PSII was much stronger in the mutant than that in the WT. The ygl1 plants showed higher nonphotochemical quenching and lower photochemical quenching. They also exhibited higher actual photochemical efficiency of PSII with a higher electron transport rate. Under the light of 200 μmol(photon) m-2 s-1, the ygl1 mutant showed lesser deepoxidation of violaxanthin in the xanthophyll cycle than WT, but it increased substantially under strong light conditions. In conclusion, the photosynthetic machinery of the ygl1 remained stable during leaf development. The plants were less sensitive to photoinhibition compared with WT due to the active xanthophyll cycle. The ygl1 plants were efficient in both light harvesting and conversion of solar energy., Z. M. Wu, X. Zhang, J. L. Wang, J. M. Wan., and Obsahuje bibliografii
Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in developing leaves in an attempt to elucidate the relative importance of various photoprotective mechanisms during leaf ontogeny. Big leaves of Anthocephalus chinensis, a fast-growing light demanding species, expanded following an exponential pattern, while relatively small leaves of two shade-tolerant species Litsea pierrei and Litsea dilleniifolia followed a sigmoidal pattern. The juvenile leaves of A. chinensis and L. pierrei contained anthocyanin located below the upper epidermis, while L. dilleniifolia did not contain anthocyanin. Leaves of A. chinensis required about 12 d for full leaf expansion (FLE) and photosynthetic development was delayed 4 d, while L. pierrei and L. dilleniifolia required 18 or 25 d for FLE and photosynthetic development was delayed 10 or 15 d, respectively. During the leaf development the increase in maximum net photosynthetic rate was significantly related to changes in stomatal conductance and the leaf maturation period was positively related to the steady-state leaf dry mass per area for the three studied species. Dark respiration rate of leaves at developing stages was greater, and pre-dawn initial photochemical efficiency was lower than that of mature leaves. Young leaves displayed greater energy dissipation than mature leaves, but nevertheless, the diurnal photoinhibition of young L. dilleniifolia leaves was higher than that of mature leaves. The young red leaves of A. chinensis and L. pierrei with high anthocyanin contents and similar diurnal photoinhibition contained more protective enzymes (superoxide dismutase, ascorbate peroxidase) than mature leaves. Consequently, red leaves may have higher antioxidant ability. and Z. Q. Cai, M. Slot, Z. X. Fan.
Upland cotton (Gossypium hirsutum L.) can move leaves to track the sun throughout the day, so-called leaf diaheliotropic movement. This paper reports an experimental test of the hypothesis that leaf diaheliotropic movement in upland cotton can enhance carbon assimilation and not increase the risk of stress from high energy load. In this experiment, cotton leaves were divided into two groups: one was that leaves could track the sun freely; another was that leaves were retained to the horizontal position. The diaheliotropic leaves recorded higher incident irradiance than the restrained ones, especially in the morning and late afternoon. Compared with restrained leaves, diaheliotropic leaves were generally warmer throughout the day. As expected, diaheliotropic leaves had significantly higher diurnal time courses of net photosynthetic rate (PN) than restrained leaves, except during 14:00-18:00 of the local time. Higher instantaneous water-use efficiency (WUE) was observed in diaheliotropic leaves in the early morning and late afternoon than in the restrained leaves. During the given day, diaheliotropic and restrained leaves had similar diurnal time courses of recovery of maximal quantum yield of PSII photochemistry (Fv/Fm). Diaheliotropic leaves recorded lower or similar photochemical quenching coefficient (qp) than restrained leaves did throughout the day. These results suggest that cotton leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition. and Y.-L. Zhang ... [et al.].
Periodic flooding of trees in tropical floodplains and reservoirs where water levels fluctuate is a common phenomenon. The effects of flooding and subsequent recovery on gas exchange, chlorophyll fluorescence and growth responses of Melaleuca alternifolia seedlings, a tall shrub species used in floodplain and reservoir forest restoration in southern China, were studied during a grow season (from March to December in 2007). M. alternifolia seedlings were flooded for 180 days, drained and left to recover for another 60 days. Survival rates of the seedlings were 100% during the 180-day flooding period. Chlorophyll (Chl) content, net photosynthetic rate
(PN), stomatal conductance (gs), and transpiration rate (E) of the flooded seedlings were all significantly lower than those of the control. Significant reductions of photochemical quenching coefficient (qp) and increases of nonphotochemical quenching (NPQ) in the flooded seedlings were observed. However, there were no significant differences in the maximal quantum yield of PSII photochemistry (Fv/Fm) between treatments. All seedlings survived during the two-month recovery period after the flooded treatment was drained, and the biomass and height of the recovered seedlings approached those of the control at the end of the experiment. During the first-month recovery period, Chl content, PN, gs and E in the recovered seedlings were all obviously low, then increased gradually and rose to the levels similar to the control by the end of the experiment. Quenching analysis revealed significant reductions of qp and increments of NPQ in the recovered seedlings at the beginning of draining, and a nearly complete recovery for both parameters by the end of the experiment. However, Fv/Fm of the recovered seedlings did not differ significantly from the control during the recovery period. Our study demonstrated that M. alternifolia seedlings can survive and grow through 180 days of flooding with a subsequent 60-day recovery period in drained conditions, indicating that seedlings of this species would be suitable for afforestation in areas exposed to intermittent flooding. and Y. X. Ying ... [et al.].
Photochemical efficiency of PSII of Ctenanthe setosa was investigated to understand the photosynthetic adaptation mechanism under drought stress causing leaf rolling. Stomatal conductance (gs), the levels of photosynthetic pigments and chlorophyll (Chl) fluorescence parameters were determined in leaves that had four different visual leaf rolling scores from 1 to 4, opened after re-watering and mechanically opened at score 4. gs value gradually decreased in adaxial and abaxial surfaces in relation to scores of leaf rolling. Pigment contents decreased until score 3 but approached score 1 level at score 4. No significant variations in effective quantum yield of PSII (ΦPSII), and photochemical quenching (qp) were found until score 3, while they significantly decreased at score 4. Non-photochemical quenching (NPQ) increased at score 2 but then decreased. After re-watering, the Chl fluorescence and other physiological parameters reached to approximately score 1 value, again. As for mechanically opened leaves, gs decreased during drought period. The decrease in adaxial surface was higher than that of the rolled leaves. NPQ was higher than that of the rolled leaves. ΦPSII and qp significantly declined and the decreases were more than those of the rolled leaves. In conclusion, the results indicate that leaf rolling protects PSII functionality from damage induced by drought stress. and H. Nar ... [et al.].
Using measures of gas exchange and photosynthetic chain activity, we found some differences between grapevine inflorescence and leaf in terms of photosynthetic activity and photosynthesis regulations. Generally, the leaf showed the higher net photosynthesis (PN) and lower dark respiration than that of the inflorescence until the beginning of the flowering process. The lower (and negative) PN indicated prevailing respiration over photosynthesis and could result from a higher metabolic activity rather than from a lower activity of the photosynthetic apparatus. Considerable differences were observed between both organs in the functioning and regulation of PSI and PSII. Indeed, in our conditions, the quantum yield efficiency and electron transport rate of PSI and PSII were higher in the inflorescence compared to that of the leaf; nevertheless, protective regulatory mechanisms of the photosynthetic chain were clearly more efficient in the leaf. This was in accordance with the major function of this organ in grapevine, but it highlighted also that inflorescence seems to be implied in the whole carbon balance of plant. During inflorescence development, the global PSII activity decreased and PSI regulation tended to be similar to the leaf, where photosynthetic activity and regulations remained more stable. Finally, during flowering, cyclic electron flow (CEF) around PSI was activated in parallel to the decline in the thylakoid linear electron flow. Inflorescence CEF was double compared to the leaf; it might contribute to photoprotection, could promote ATP synthesis and the recovery of PSII., M. Sawicki, B. Courteaux, F. Rabenoelina, F. Baillieul, C. Clement, E. Ait Barka, C. Jacquard, N. Vaillant-Gaveau., and Obsahuje bibliografii
In this article, the effects of drought stress (DS) on gas exchange, chlorophyll (Chl) a fluorescence and Calvin cycle enzymes in Phaseolus vulgaris are evaluated. Three-week-old plants were exposed to DS by receiving only so much water every evening to ensure 30% field capacity water content overnight. After three days under these conditions, we observed that DS induced a decline of the CO2 assimilation. Gas-exchange data showed that the closure of stomata during DS did not lead to a concomitant decline in calculated intercellular CO2 concentration. Moreover, DS plants showed a reduction of the photochemical Chl fluorescence quenching, photosystem II quantum yield and electron transport rate and a higher pH gradient and more heat dissipation as compared to controls. The activity of Calvin cycle enzymes, Rubisco, sFBPase, and Ru5PK, decreased strongly in DS plants as compared to controls. Data analysis suggest that the decrease of CO2 assimilation under drought conditions is not related to a diminished capacity of the use of NADPH and ATP but probably to the decline of enzyme activity involved in RuBP regeneration (Ru5PK). and M. C. Dias, W. Brüggemann.
Haberlea rhodopensis Friv. is unique with its ability to survive desiccation to an air-dry state during periods of extreme drought and freezing temperatures. To understand its survival strategies, it is important to examine the protective mechanisms not only during desiccation but also during rehydration. We investigated the involvement of alternative cyclic electron pathways during the recovery of photosynthetic functions after freezing-induced desiccation. Using electron transport inhibitors, the role of PGR5-dependent and NDH-dependent PSI-cyclic electron flows and plastid terminal oxidase were assessed during rehydration of desiccated leaves. Recovery of PSII and PSI, the capacity of PSI-driven cyclic electron flow, the redox state of plastoquinone pool, and the intersystem electron pool were analyzed. Data showed that the effect of alternative flows is more pronounced in the first hours of rehydration. In addition, the NDH-dependent cyclic pathway played a more determining role in the recovery of PSI than in the recovery of PSII.
Tea tree (Melaleuca alternifolia) canopy was sprayed with low concentration of NaHSO3 or mixture of NaHSO3+ KH2PO4. The treatments significantly enhanced net photosynthetic rate (PN), carboxylation efficiency (CE), and the maximum response of PN to intercellular CO2 concentration. The enhancement of PN by foliar application of low concentrations of bisulfite was due to increasing CE relevant to ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase activity and regeneration rate of RuBP depending on ATP formation. and W.-J. Yang ... [et al.].
The inhibition of photorespiration can be used to improve plant carbon fixation. In order to compare the effects of three photorespiration inhibitors [glycine, NaHSO3, and isonicotinyl hydrazide (INH)], photosynthetic parameters of leaves sprayed respectively with these chemicals were examined and their inhibiting efficiency was evaluated in Caragana korshinskii. Our results showed that 5 mM glycine could reduce the photorespiratory rate (PR) effectively, while the net photosynthetic rate (PN), stomatal conductance (gs), and intercellular CO2 concentration (Ci) significantly increased. The ratio of electron flow for ribulose-1,5-bisphosphate (RuBP) carboxylation to RuBP oxygenation was elevated markedly. NaHSO3 and INH could also suppress the PR in some cases, whereas PN was not improved. The glyoxylate content increased considerably after application of low concentrations of glycine. These results suggested that low concentrations of glycine could suppress photorespiration by
feed-back inhibition of glyoxylate and enhance photosynthesis by regulating gs, Ci, and the distribution of electron flow in C. korshinskii., T. Kang, H. D. Wu, B. Y. Lu, X. J. Luo, C. M. Gong, J. Bai., and Obsahuje bibliografii