Chlorophyll fluorescence parameter Fv/Fm, an indicator of the maximum efficiency of PS2, is routinely measured in the field with plant leaves darkened by leaf clips. I found that on a sunny day of subtropical summer, the Fv/Fm ratio was often underestimated because of a large F0 value resulted from a high leaf temperature caused by clipping the leaf under high irradiance, especially for long (e.g. 20 min) duration. This phenomenon may overestimate the down-regulation of PS2 efficiency under high irradiance. When leaf temperature was lower than 40 °C, the F0 level of rice leaves under clipping remained practically unchanged. However, F0 increased drastically with leaf temperature rising over 40 °C. In most measurements, no significant difference in Fm was found between rice leaves dark-adapted by leaf clips for 10 min and for 20 min. Therefore, shading leaf clips to prevent a drastic increase of leaf temperature, using F0 measured immediately after the leaf being darkened to calculate Fv/Fm, as well as shortening the duration of leaf clipping are useful means to avoid an underestimate of Fv/Fm.
To investigate how excess excitation energy is dissipated in a ribulose-1,5-bisphospate carboxylase/oxygenase activase antisense transgenic rice with net photosynthetic rate (PN) half of that of wild type parent, we measured the response curve of PN to intercellular CO2 concentration (Ci), electron transport rate (ETR), quantum yield of open photosystem 2 (PS2) reaction centres under irradiation (Fv'/Fm'), efficiency of total PS2 centres (ΦPS2), photochemical (qP) and non-photochemical quenching (NPQ), post-irradiation transient increase in chlorophyll (Chl) fluorescence (PITICF), and P700+ re-reduction. Carboxylation efficiency dependence on Ci, ETR at saturation irradiance, and Fv'/Fm', ΦPS2, and qP under the irradiation were significantly lower in the mutant. However, NPQ, energy-dependent quenching (qE), PITICF, and P700+ re-reduction were significantly higher in the mutant. Hence the mutant down-regulates linear ETR and stimulates cyclic electron flow around PS1, which may generate the ΔpH to support NPQ and qE for dissipation of excess excitation energy. and S.-H. Jin ... [et al.].
The aim of this study was to explore how the mitochondrial alternative oxidase (AOX) pathway alleviates photoinhibition in chilled tomato (Solanum lycopersicum) seedlings. Chilling induced photoinhibition in tomato seedlings despite the increases in thermal energy dissipation and cyclic electron flow around PSI (CEF-PSI). Chilling inhibited the function of PSII and blocked electron transport at the PSII acceptor side, however, it did not affect the oxygen-evolving complex on the donor side of PSII. Upregulation of the AOX pathway protects against photoinhibition by improving PSII function and photosynthetic electron transport in tomato seedlings under chilling stress. The AOX pathway maintained the open state of PSII and the stability of the entire photosynthetic electron transport chain. Moreover, the protective role of the AOX pathway on PSII was more important than that on PSI. However, inhibition of the AOX pathway could be compensated by increasing CEF-PSI activity under chilling stress.
Variations in leaf gas-exchange characteristics, PSII activity, leaf pigments, and tuber yield were investigated in seven wild and one cultivated species of Dioscorea from Koraput, India, in order to find out their overall adaptability to the environment. The leaf photosynthetic rate, transpiration, stomatal conductance, water-use efficiency, carboxylation efficiency, and photosynthetic pigments were significantly higher in some wild species compared to the cultivated species. In addition, some wild species showed better photochemical efficiency of PSII, photochemical quenching, and electron transport rate in comparison to cultivated one. Furthermore, leaf dry matter accumulation and tuber yield was also higher in some wild species compared to the cultivated species. Taken together, the wild species, such as D. oppositifolia, D. hamiltonii, and D. pubera, showed the superior photosynthetic efficiency compared to the cultivated D. alata and they could be used for future crop improvement programs., B. Padhan, D. Panda., and Obsahuje bibliografii
Among various epiphytic ferns found in the Brazilian Atlantic Forest, we studied Vittaria lineata (L.) Smith (Polypodiopsida, Pteridaceae). Anatomical characterization of the leaf was carried out by light microscopy, fluorescence microscopy, and scanning electron microscopy. V. lineata possesses succulent leaves with two longitudinal furrows on the abaxial surface. We observed abundant stomata inside the furrows, glandular trichomes, paraphises, and sporangia. We examined malate concentrations in leaves, relative water content (RWC), photosynthetic pigments, and chlorophyll (Chl) a fluorescence in control, water-deficient, and abscisic acid (ABA)-treated plants. Plants subjected to drought stress (DS) and treated by exogenous ABA showed significant increase in the malate concentration, demonstrating nocturnal acidification. These findings suggest that V. lineata could change its mode of carbon fixation from C3 to the CAM pathway in response to drought. No significant changes in RWC were observed among treatments. Moreover, although plants subjected to stress treatments showed a significant decline in the contents of Chl a and b, the concentrations of carotenoids were stable. Photosynthetic parameters obtained from rapid light curves showed a significant decrease after DS and ABA treatments., B. D. Minardi, A. P. L. Voytena, M. Santos, Á. M. Randi., and Obsahuje bibliografii