We analysed plant growth, ion accumulation, leaf water relations, and gas exchange of Avicennia germinans (L.) L. subjected to a long-term, controlled salinity gradient from 0 to 55 ‰. Growth and leaf area were affected by salinity higher than 10 ‰. As salinity increased, the predawn leaf water potential (Ψw) and leaf osmotic potential (Ψs) decreased. Leaf Ψw was at least -0.32 MPa lower than the Ψw of solution. Na+ and K+ ions explained about 78 % of decrease in Ψs. K+ tissue water concentration decreased by more than 60 % in all salinity treatments as compared with those grown at 0 ‰. Inversely, Na+ concentration in tissue water increased with nutrient solution salinity. The maximum net photosynthetic rate
(PN) and stomatal conductance (gs) decreased by 68 and 82 %, respectively, as salinity increased from 0 to 55 ‰; the intercellular CO2 concentration (Ci) followed the same trend. The PN as a function of Ci showed that both the initial linear slope and upper plateau of the PN vs. Ci curve were markedly affected by high salinity (40 and 55 ‰). and N. Suárez, E. Medina.
A greenhouse study was performed in order to investigate the effects of three arbuscular mycorrhizal fungi (AMF) species on vegetative growth, water relations, and mineral composition parameters of snapdragon (Antirrhinum majus cv. Bells white) under irrigation from different water sources. Five irrigation treatments included using purely desalinized (fresh) water (DW), as a control, three different blends of DW with saline ground water from a well with increasing salinity, and one with 100% of saline well water. Inoculation with AMF enhanced growth rates and a relative water content of snapdragon plants grown under well-water irrigation. AMF also improved the leaf water potential and increased water-use efficiency of the plants. Shoot and root dry masses were higher in the AMF-treated plants than those in AMF-free plants. In both shoots and roots, concentrations of total P, Ca2+, N, Mg2+, and K+ were higher in the AMF-treated plants compared with AMF-free plants under salt-stress conditions. Shoot Cl- and Na+ concentrations were lower in the AMF-treated plants than those in the AMF-free plants grown under well-water irrigation. Snapdragon plants exhibited a high degree of dependency on AMF; it improved plant growth rates and leaf water relations, particularly, with increasing salinity of irrigation water., Y. I. El-Nashar., and Obsahuje bibliografii