Handy Plant Efficiency Analyser (Handy PEA) provides a method for the high-throughput screening of photosynthetic germplasm. However, the large number of chlorophyll a fluorescence parameters (CFPs) from PEA and the inconsistency of CFP applications among studies greatly limit the accuracy of photosynthesis analyses. In this study, all 53 CFPs of 186 upland cotton cultivars (strains) were measured at 12:00 and 17:00 h. Thirty-two CFPs were selected according to biological importance, and the CFP relationships were determined. Differences in the response ability of cotton cultivars (strains) to high light intensity stress were demonstrated by the distribution of CFPs. Furthermore, the classification and evaluation of photosynthetic characteristics of cotton cultivars (strains) were carried out by Principal Component Analysis and Cluster Analysis. Finally, ten cotton cultivars (strains) with good photosynthetic performance were selected. This study provides a high-throughput method how to identify cotton germplasm resources with high photosynthetic efficiency.
Ionic environment is important in regulating photosynthetic reactions. The roles of cations, Mn2+, Mg2+, Ca2+, Na+, and K+ as cofactors in electron transport, energy transfer, phosphorylation, and carbon assimilation are better known than the roles of anions, except for chloride and bicarbonate. Only a limited information exists on the roles and effects of nitri formate, sulphate, and phosphate. In this review, we evaluate and highlight the roles of some specific anions on electron transport as well as on excitation energy transfer processes in photosynthesis. Anions exert significant effects on thyla membrane conformation and membrane fluidity, possibly by redistributing the thylakoid membrane surface charges. The anion/cation induced phase transitions in the hydrophilic domains of the thylakoid membranes are probably responsible for the various structural and co-related functional changes under stress. Anions are also important in regulation of energy distribution between the two photosystems. Anions do not only divert more energy from photosystem (PS) 2 to PS1, but can also reverse the effect of cations on energy distribution in a valence-dependent manner. Anions affect also the structure of the photosynthetic apparatus and excitation energy distribution between the two photosystems. and A. Jajoo, S. Bharti, P. Mohanty.
Silicomolybdate (SiMo) is an electron acceptor that has many characteristics, the ignorance of which makes an interpretation of the results quite troublesome. In photoinhibitíon experiments the photosystem 2 (PS 2) actívity can be best monitored if 1 pM dibromotíiymoquinone (DBMIB) is added after photoinhibitory treatment and SiMo is added in the light. Diuron (DCMU) may complicate interpretation of the results as it is also a competítíve inhibitor of SiMo binding at pH 7.6. The binding niche of SiMo is probably located at the stroma side between the fourth and fifth helix of the Dl and D2 proteins close to Q^- The whole chain actívity was much more affected by the photoinhibitory treatment than the PS 2 actívity itself Uncoupling of electron flow by addition of ammonium chloride accelerated the rate of photoinhibitíon. Photoinhibitory treatment decreased not only the Hill actívity at photon saturation, but also decreased the quantum yield and increased the photon flux density yielding half maximum rate of electron flow (K^). Decrease of quantum yield indicated that the photochemistry of PS 2 was afiected; increase of indicated a coiďormational change of the SiMo binding site. In experiments on PS 2 actívity monitored witíi SiMo, DCMU had no protectíve effect on the damage of the electron transport chain between water and QA.
We recently developed a chlorophyll a fluorescence method (activated F0 rise) for estimating if a light wavelength preferably excites PSI or PSII in plants. Here, the method was tested in green microalgae: Scenedesmus quadricauda, Scenedesmus ecornis, Scenedesmus fuscus, Chlamydomonas reinhardtii, Chlorella sorokiniana, and Ettlia oleoabundans. The Scenedesmus species displayed a plant-like action spectra of F0 rise, suggesting that PSII/PSI absorption ratio is conserved from higher plants to green algae. F0 rise was weak in a strain of C. reinhardtii, C. sorokiniana, and E. oleoabundans. Interestingly, another C. reinhardtii strain exhibited a strong F0 rise. The result indicates that the same illumination can lead to different redox states of the plastoquinone pool in different algae. Flavodiiron activity enhanced the F0 rise, presumably by oxidizing the plastoquinone pool during pre-illumination. The activity of plastid terminal oxidase, in turn, diminished the F0 rise, but to a small degree.
Wild Arachis genotypes were analysed for chlorophyll a fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, i.e., SLA and SPAD readings (r =-0.76), SLA and ΔC (r = 0.42), and ΔC and SPAD readings (r = 0.30) were established. The ratio of maximal quantum yield of PSII photochemistry (Fv/Fm) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the Fv/Fm ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74. Selected Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha-1 per year in 2008 and 2009, respectively. Leaf
water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions., P. C. Nautiyal, A. L. Rathnakumar, G. Kulkarni, M. S. Sheshshayee., and Obsahuje bibliografii
Recent reports have indicated a considerably inactivated PSII in twig cortices, in spite of the low light transmittance of overlying periderms. Corresponding information for more deeply located and less illuminated tissues like xylem rays and pith are lacking. In this investigation we aimed to characterize the efficiency of PSII and its light sensitivity along twig depth, in conjunction with the prevailing light quantity and quality. To that aim, optical methods (spectral reflectance and transmittance, chlorophyll fluorescence imaging, low temperature fluorescence spectra) and photoinhibitory treatments were applied in cut twig sections of four tree species, while corresponding leaves served as controls. Compared to leaves, twig tissues displayed lower chlorophyll (Chl) levels and dark-adapted PSII efficiency, with strong decreasing gradients towards the twig center. The low PSII efficiencies in the inner stem were not an artifact due to an actinic effect of measuring beam or to an enhanced contribution of PSI fluorescence. In fact, the PSII/PSI ratios in cortices were higher and those in the xylem rays similar to that of leaves. Inner twig tissues were quite resistant to photoinhibitory treatments, tolerating irradiation levels several-fold higher than those encountered in their microenvironment. Moreover, the extent of high light tolerance was similar in naturally exposed and shaded twig sides. The results indicate an increasing, inherent and light-independent inactivation of PSII along twig depth. The findings are discussed on the basis of a recently proposed model for photosynthetic electron flow in twigs, taking into account the specific atmospheric and light microenvironment as well as the possible metabolic needs of such bulky organs. and C. Yiotis, Y. Petropoulou, Y. Manetas.
Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding β- and α -subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different. and S. Qin, F. Q. Zhao, C. K. Tseng.
Increasing the efficiency of photosynthesis in sugarcane canopies is the key for improving crop yield. Herein, we evaluated the photosynthetic performance along the canopy of ten sugarcane cultivars and three Saccharum species. Canopy morphological traits were evaluated, and leaf gas exchange was measured in the first (sun-exposed, +1) and the fourth (shaded, +4) fully expanded leaves and under low- and high-light conditions. Similar photosynthetic capacity was found in leaves +1 and +4 under high light in genotypes with a high leaf area index and a high fraction of the sky blocked by the foliage (> 85%). Interestingly, such canopy characteristics cause low light availability to leaves +4, suggesting the photosynthetic acclimation of these leaves to self-shading in some genotypes. We highlight IACCTC06-8126 and CTC4 as those genotypes with higher canopy photosynthetic capacity, presenting high leaf area, high photosynthetic rates in sun-exposed leaves, and high responsiveness of shaded leaves to increasing light availability.
Changes in photosynthetic attributes related to genetic improvement of cotton yield were studied in seven Chinese cotton cultivars widely grown in Xinjiang during the past 30 years. Our results showed that a chlorophyll (Chl) content and net photosynthetic rate (PN) of the 1980s cultivar was the highest among all after 60 days from planting (DAP). However, after 75 DAP, the Chl content, PN, and actual photochemical efficiency of PSII of the old cultivars declined gradually, whereas those of the new cultivars remained relatively high. Compared to the old cultivars, leaves of the new cultivars endured a longer period and their senescence was slower, shoot and boll dry mass was higher, but the root to shoot ratio was lower. The lint yield of the 2000s cultivars was 14.7 and 21.4% higher than that of 1990s and 1980s cultivars, respectively. The high yield of the new cultivars was attributed to a greater number of bolls per unit of area with high lint percentage. We suggested that the improved photosynthetic capacity and the increased ability to deliver photosynthates to reproductive sites during the peak boll-setting stage to boll-opening stage were the key physiological basis in the evolution process of cotton cultivars from 1980s to 2000s for the cotton yield improvement within a short growing period., H. H. Luo, H. L. Zhang, Y. L. Zhang, W. F. Zhang., and Obsahuje bibliografii
In the phylogenetic history of photosynthesis the C4 photosynthetic pathway is a rather latě, a nearly recent event. With the background of globál CO2 starvation and given the evolutionary competence, different ecological constraints as water and/or nitrogen deficiency oř salinity could be the driving forces in distinct habitats for selection of genotypes with a CO2 pump. Whether C3-like C3-C4 intermediate species BLS Moricandia arvensis with a less efficient CO2 pump are on the way to C4 photosynthesis remains an open question. Selection for a somewhat improved CO2 concentration mechanism under strong selective pressure seems to be a possible experimental approach to imitate evolutionary steps in adaptation to CO2 starvation.