This study examined the utility of the ratio of variable fluorescence to maximum fluorescence (Fv/Fm) to detect freezing injury on buds of two Vitis vinifera cultivars: Pinot noir and Pinot gris. Freezing treatments on buds caused a decrease both in Fv/Fm and percentage of budburst, more severely on Pinot gris than Pinot noir, specifically at the lower temperature (-20°C). Fv/Fm ratio showed a close correlation with percentage of budburst, and a threshold of the lethal Fv/Fm was proposed as an indicator of bud mortality. and L. Zulini, C. Fischer, M. Bertamini.
Chlorophyll (Chl) fluorescence is a subtle reflection of primary reactions of photosynthesis. Intricate relationships between fluorescence kinetics and photosynthesis help our understanding of photosynthetic biophysical processes. Chl fluorescence technique is useful as a non-invasive tool in eco-physiological studies, and has extensively been used in assessing plant responses to environmental stress. The review gives a summary of some Chl fluorescence parameters currently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chilling stress.
Acid rain causes damages to forest ecosystems. Here, we reported that acid rain could promote plant growth. From 2006 to 2009, one-year-old Elaeocarpus glabripetalus seedlings were sprayed with simulated acid rain (AR) (pH 2.5, 4.0, and 5.6). The maximum quantum yield efficiency of PSII and the actual photochemical quantum efficiency of PSII increased with rising AR acidity, which facilitated chlorophyll fluorescence and plant growth, as shown by a declining minimal fluorescence yield of dark-adapted state with little damage to the PSII reaction center. After the second experimental year, the plant height and ground diameter were greater at pH 2.5 than those found at pH 4.0 and 5.6. This showed the positive effects of AR on the seedling growth and photosynthesis of E. glabripetalus, revealing that this species exhibited a stronger resistance to acid deposition than some other tree species. This implies that E. glabripetalus is an acid-tolerant species., M.H. Liu, L.T. Yi, S.Q. Yu, F. Yu, X.M. Yin., and Obsahuje bibliografii
Photosynthetic fluorescence emission spectra measurement at the temperature of 77 K (-196°C) is an often-used technique in photosynthesis research. At low temperature, biochemical and physiological processes that modulate fluorescence are mostly abolished, and the fluorescence emission of both PSI and PSII become easily distinguishable. Here we briefly review the history of low-temperature chlorophyll fluorescence methods and the characteristics of the acquired emission spectra in oxygen-producing organisms. We discuss the contribution of different photosynthetic complexes and physiological processes to fluorescence emission at 77 K in cyanobacteria, green algae, heterokont algae, and plants. Furthermore, we describe practical aspects for obtaining and presenting 77 K fluorescence spectra., J. J. Lamb, G. Røkke, M. F. Hohmann-Marriott., and Obsahuje bibliografické odkazy
Graft union development in plants has been studied mainly by destructive methods such as histological studies. The aim of this work was to evaluate whether the chlorophyll fluorescence imaging (CFI) technique is sensitive enough to reflect changes at the cellular level in different Solanaceae grafted plants 30 d after grafting, when both grafted partners were well fused and strong enough in all plant combinations. The pepper cultivar ‘Adige’ was grafted onto different Capsicum spp. accessions typified with different compatibility degrees; eggplant was grafted on Solanum torvum and pepper homografts as compatible unions; pepper was grafted on S. torvum and on tomato as incompatible unions. ‘Adige’/’Adige’ and ‘Adige’/pepper A25 showed a higher maximum quantum efficiency of PSII associated with higher values of actual quantum efficiency of PSII and photochemical quenching as well as with vascular regeneration across the graft interface. Our results highlighted that CFI changes reflected histological observations in grafted Solanaceae plants., C. Penella, A. Pina, A. San Bautista, S. López-Galarza, Á. Calatayud., and Obsahuje seznam literatury
Chlorophyll a fluorescence analysis (CFA) has been accepted to study postharvest activity and stability of photosynthesis of vegetables and salad greens, and some fruits. Commercial chlorophyll fluorescence imaging (CFI) systems may provide additional insight into spatial and temporal dynamics of photosynthesis. This yields valuable information on the effects of postharvest handling and processing (sorting, cutting, packaging, etc.) on physiological activity and 'internal quality' of green produce, and its changes. Here, meaning and physiological basics of relevant fluorescence parameters is briefly summarised, while major focus is on recent applications of CFI to evaluate quality and quality maintenance during postharvest handling and minimal processing of fresh fruits and vegetables. CFI is given surprisingly little attention in the monitoring of postharvest quality, although it is suitable for adjusting and/or optimising innovative postharvest techniques. Knowledge of the physiological base and the limit of interpretation is indispensable for meaningful interpretations of results to draw correct consequences., W. B. Herppich., and Obsahuje bibliografické odkazy
A flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) is described that allows to screen and image the photosynthetic activity of several thousand leaf points (pixels) of intact leaves in a non-destructive way within a few seconds. This includes also the registration of several thousand leaf point images of the four natural fluorescence bands of plants in the blue (440 nm) and green (520 nm) regions as well as the red (near 690 nm) and far-red (near 740 nm) Chl fluorescence. The latest components of this Karlsruhe FL-FIS are presented as well as its advantage as compared to the classical single leaf point measurements where only the fluorescence information of one leaf point is sensed per each measurement. Moreover, using the conventional He-Ne-laser induced two-wavelengths Chl fluorometer LITWaF, we demonstrated that the photosynthetic activity of leaves can be determined measuring the Chl fluorescence decrease ratio, RFd (defined as Chl fluorescence decrease Fd from maximum to steady state fluorescence Fs:Fd/Fs), that is determined by the Chl fluorescence induction kinetics (Kautsky effect). The height of the values of the Chl fluorescence decrease ratio RFd is linearly correlated to the net photosynthetic CO2 fixation rate PN as is indicated here for sun and shade leaves of various trees that considerably differ in their PN. Imaging the RFd-ratio of intact leaves permitted the detection of considerable gradients in photosynthetic capacity across the leaf area as well as the spatial heterogeneity and patchiness of photosynthetic quantum conversion within the control leaf and the stressed plants. The higher photosynthetic capacity of sun versus shade leaves was screened by Chl fluorescence imaging. Profile analysis of fluoresence signals (along a line across the leaf area) and histograms (the signal frequency distribution of the fluorescence information of all measured leaf pixels) of Chl fluorescence yield and Chl fluorescence ratios allow, with a high statistical significance, the quantification of the differences in photosynthetic activity between various areas of the leaf as well as between control leaves and water stressed leaves. The progressive uptake and transfer of the herbicide diuron via the petiole into the leaf of an intact plant and the concomitant loss of photosynthetic quantum conversion was followed with high precision by imaging the increase of the red Chl fluorescence F690. Differences in the availability and absorption of soil nitrogen of crop plants can be documented via this flash-lamp fluorescence imaging technique by imaging the blue/red ratio image F440/F690, whereas differences in Chl content are detected, by collecting images of the fluorescence ratio red/far-red, F690/F740., and H. K. Lichtenthaler ... [et al.].
Two types of fluorimeter (inductíon and modulated) were employed to compare the intrinsic photosystem 2 efSciency of sun-exposed and shaded flag leaves of two cultivars (ICSV112 and Aralba) of sorghum, in the irrigated and unirrígated fleld plots at Monterotondo, Rome. Generally there was a good correlation between instruments, but for the irrigated sun adapted leaves of both cultivars much larger ratios were recorded with the modulated fluorimeter than with the inductíon one. This discrepancy was attributed to an insufficient flash intensity in the inductíon systém when measuring the healthy leaves adapted to a high irradiance.
Greenhouse-grown susceptible 20-d-old seedlings of Theobroma cacao genotypes Catongo and tolerant genotype SCA6xCatongo were inoculated with a mixture of isolates of Crinipellis perniciosa, the causal agent of witches' broom. The characteristics of chlorophyll a fluorescence emission were monitored during leaf ontogeny using a portable system PAM-2000. In both inoculated and non-inoculated genotypes, significant differences were found for the effective quantum yield values of photosystem (PS) 2 (ΔF/Fm') at the B (7 to 14-d-old), D (21 to 30-d-old), and E (>30-d-old) stages of leaf development, and in quantum yield of the non-cyclic photosynthetic electron transport between PS2 and PS1 [qp(Fv/Fm)] and quencher efficiency [(Fm-Ft)/F0] at the B, C (15 to 20-d-old) and D stages. Intergenotypic differences were found only for the [qp(Fv/Fm)] and [(Fm-Ft)/F0] values at the E stage, and for fluorescence quenching (Fm-Ft) at the B and E stages. Highly significant inter- and intragenotype relationships were found between the rate of photosynthetic electron transport to PS2 (Amax) and maximum fluorescence during actinic irradiation (Fm'). Also, each of the highly significant relationships between (Fm-Ft) and Amax, [(Fm-Ft)/F0] and ΔF/Fm', and between [(Fm-Ft)/F0] and Amax were represented by a general model, independent of treatments. Therefore, alterations in energy distribution in the radiant energy collector complex interior of PS2 and reduction in absorption of photosynthetically active radiation were observed in the infected plants, mainly in the hybrid at the C stage. Also, variations were found in the noncyclic photosynthetic electron transport at the B and C stages in the infected Catongo. and I. C. F. Santos, A.-A. F. de Almeida, R. R. Valle.
Chlorophyll fluorescence parameters (Chl FPs) derived from the slow (long-term) induction kinetics of modulated Chl a fluorescence are reviewed and analysed with respect to their application in photosynthesis research. Only four mutually independent Chl FPs, calculated from values of five essential Chl fluorescence (ChlF) yields, are distinguished as the basic ones. These are: the maximum quantum yield of PS2 photochemistry (ΦPO), the photochemical quenching of variable ChlF (qP), the non-photochemical quenching of variable ChlF (qN), and the relative change of minimum ChlF (qO). ΦPO refers to the dark-adapted state of a thylakoid membrane, qP, qN and qO characterise the light-adapted state. It is demonstrated that all other Chl FPs can be determined using this quartet of parameters. Moreover, three FPs related to the non-radiative energy dissipation within thylakoid membranes are evaluated, namely: the non-photochemical ChlF quenching (NPQ), the complete non-photochemical quenching of ChlF (qCN), and the effective quantum yield of non-photochemical processes in PS2 (ΦN). New FPs, the total quenching of variable ChlF (qTV) and the absolute quenching of ChlF (qA) which allow to quantify co-action of the photochemical and non-photochemical processes during a light period are defined and analysed. The interpretation of Chl FPs and recommendations for their application in the photosynthesis research are also given. Some alternative FPs used in the laboratory practice have only an approximate character and can lead to incorrect conclusions if applied to stressed plants. They are reviewed and compared with the standard ones. All formulae and conclusions discussed herein are verified using experimental values obtained on young seedlings of the Norway spruce (Picea abies [L.] Karst.).