The effects of enhanced ultraviolet-B (UV-B, 0.4 W m-2) irradiance and nickel (Ni, 0.01, 0.10 and 1.00 mM; Ni0.01, Ni0.10, Ni1.00, respectively) treatment, singly and in combination, on growth, photosynthetic electron transport activity, the contents of reactive oxygen species (ROS), antioxidants, lipid peroxidation, and membrane leakage in soybean seedlings were evaluated. Ni0.10 and Ni1.00 and UV-B declined the growth and chlorophyll content, which were further reduced following combined exposure. Contrary to this, Ni0.01 stimulated growth, however, the effect together with UV-B was inhibitory. Carotenoids showed varied response to both the stresses. Simultaneous exposure of UV-B and Ni as well as UV-B alone reduced the activities of photosystems 1 and 2 (PS1 and PS2) and whole chain activity significantly, while Ni individually, besides strongly inhibiting PS2 and whole chain activity, stimulated the PS1 activity. Both the stresses, alone and together, enhanced the contents of superoxide radical (O2⋅-), hydrogen peroxide (H2O2), malondialdehyde (MDA), electrolyte leakage, and proline content, while ascorbate content declined over control. Individual treatments increased the activities of catalase (CAT), peroxidase, and superoxide dismutase (SOD), but Ni1.00 declined SOD activity significantly. Combined exposure exhibited similar response, however, CAT activity declined even more than in control. Compared to individual effects of UV-B and Ni, the simultaneous exposure resulted in strong inhibition of photosynthetic electron transport and excessive accumulation of ROS, thereby causing severe damage to soybean seedlings. and S. M. Prasad, R. Dwivedi, M. Zeeshan.
‘Hass‘ and ‘Fuerte‘ avocado plants were grown under well-watered or waterlogged conditions. Results indicated significant effects on the majority of the allometric parameters in waterlogged plants, with ‘Fuerte‘ displaying a more pronounced growth inhibition. Waterlogged conditions caused a progressive and simultaneous decline in net photosynthetic rate and stomatal conductance, earlier in ‘Fuerte‘ than in ‘Hass‘. Maximal potential quantum yield of PSII was unaffected by the soil water regime and/or variety and leaf water potential values in waterlogged plants were not more negative compared with control plants. ‘Fuerte‘ waterlogged plants exhibited increased contents of thiobarbituric acid reactive substances, whereas oxidative injury was not detected in ‘Hass‘. Finally, none of the two cultivars displayed valuable antioxidant potential, as evidenced by the decreased activities of the antioxidant enzymes superoxide dismutase, guaiacol peroxidase, glutathione peroxidase, and ascorbate peroxidase., G. Doupis, N. Kavroulakis, G. Psarras, I. E. Papadakis., and Obsahuje seznam literatury
The rooting of shoots of micropropagated Rosa hybrida cv. Madame Delbard was conducted on MS medium with 30 kg m-3 sucrose or on hydroponic medium (containing less mineral salts), under higher photosynthetic photon flux density (PPFD) (100 in comparison with 45 µmol m-2 s-1) and flushed by ambient air [AC, 340 µmol(CO2) mol-1] or by CO2-enriched air (EC, 2 500 µmol mol-1) and lower relative humidity (80-90 % vs. 96-99 %). This cultivation led to plantlets with longer roots and adventitious root formation. Net photosynthetic rate and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities, RuBPCO/phosphoenolpyruvate carboxylase activities ratio, and starch accumulation increased under these conditions. After 14 d, plantlets had functional stomata and could be acclimated on open benches without gradual decrease in relative humidity. The percentage of survival was higher when the rooting took place in EC than in AC. However, the advantage acquired during rooting phase by plantlets cultured in liquid medium was not maintained after 4 weeks of acclimatisation. and C. Genoud ... [et al.].
Alfalfa was grown in fíeld plots at the current CO2 concentratíon (350 pmol mol"' = C350) and at 350 pmol mol"' above the current concentratíon (= c^qq). Alfalfa and weed growth, and canopy water vapor (£) and carbon dioxide exchange (f) were determined for the first year. Alfalfa yield summed for the three harvests in the first year was greater for the C700 treatment in two of the years studied, but significantly less in a third year. Weed growth was unaffected. Survival of alfalfa plants was greater at Cypo for years in which there was substantíal mortality, even when yield was not increased by the C700 treatment. In špite of a persistent reduction in leaf conductance to water vapor (gj), total canopy conductance (g^) to water vapor did not differ between CO2 treatments when averaged over years, because of compensating changes in canopy leaf area. CO2 efílux (F) at night per unit of ground area was consistently less in the cjqq treatment, even when daytime CO2 uptake was higher. Hence the periodic harvesting of alfalfa crops does not necessarily allow elevated CO2 to cause persistent growth stimulatíon nor reduced water use.
Acclimation to excess light is required for optimizing plant performance under natural environment. The present work showed that the treatment of Arabidopsis leaves with exogenous H2O2 can increase the acclimation of PSII to excess light. Treatments with H2O2 also enhanced the capacity of the mitochondrial alternative respiratory pathway and salicylic acid (SA) content. Our work also showed that the lack in alternative oxidase (AOX1a) in AtAOX1a antisense line and the SA deficiency in NahG (salicylate hydroxylase gene) transgenic mutant attenuated the H2O2-induced acclimation of PSII to excess light. It indicates that the
H2O2-induced acclimation of PSII to excess light could be mediated by the alternative respiratory pathway and SA., Q. Z. Hou, Y. P. Wang, J. Y. Liang, L. Y. Jia, H. Q. Feng, J. Wen, N. Ehmet, J. Y. Bai., and Obsahuje bibliografii