We studied the effects of 15-months of elevated (700 µmol mol-1) CO2 concentration (EC) on the CO2 assimilation rate, saccharide content, and the activity of key enzymes in the regulation of saccharide metabolism (glycolysis and gluconeogenesis) of four C3 perennial temperate grassland species, the dicots Filipendula vulgaris and Salvia nemorosa and the monocots Festuca rupicola and Dactylis glomerata. The acclimation of photosynthesis to EC was downward in F. rupicola and D. glomerata whereas it was upward in F. vulgaris and S. nemorosa. At EC, F. rupicola and F. vulgaris leaves accumulated starch while soluble sugar contents were higher in F. vulgaris and D. glomerata. EC decreased pyrophosphate-D-fructose-6-phosphate l-phosphotransferase (PFP, EC 2.7.1.90) activity assayed with Fru-2,6-P2 in F. vulgaris and D. glomerata and increased it in F. rupicola and S. nemorosa. Growth in EC decreased phosphofructokinase (PFK, EC 2.7.1.11) activity in all four species, the decrease being smallest in S. nemorosa and greatest in F. rupicola. With Fru-2,6-P2 in the assay medium, EC increased the PFP/PFK ratio, except in F. vulgaris. Cytosolic fructose-1,6-bisphosphatase (Fru-1,6-P2ase, EC 3.1.3.11) was inhibited by EC, the effect being greatest in F. vulgaris and smallest in F. rupicola. Glucose-6-phosphate dehydrogenase (G6PDH EC 1.1.1.49) activity was decreased by growth EC in the four species. Activity ratios of Fru-1,6-P2ase to PFP and PFK suggest that EC may shift sugar metabolism towards glycolysis in the dicots. and E. Nádas ... [et al.].
During cold treatment of Zea mays L. plants there was a decrease in the level of Fv/Fm and in the quantum yield of photosynthetic electron transport. The degree of damage depended on the ambient temperature and on the irradiance (I). The lower the temperature and the higher the 1, the more pronounced damage occurred. This suggests that photoinhibition has an important role in the cold damage to young maize. Although there was no damage in complete darkness even at low temperature, the repair processes needed a normal temperature.
The protective role of light-harvesting complex 2 (LHC2) dissociation from photosystem 2 (PS2) complex was explored by the 5'-p-fluorosulfonylbenzoyl adenosine (FSBA, an inhibitor of protein kinase) treatment at saturating irradiance (SI) in soybean leaves and thylakoids. The dissociation of some LHC2s from PS2 complex occurred after SI treatment, but FSBA treatment inhibited the dissociation as demonstrated by analysis of sucrose density gradient centrifugation of thylakoid preparation and low-temperature (77 K) chlorophyll (Chl) fluorescence. A significant increase in F0 and decrease in Fv/Fm occurred after SI, and the two parameters could largely recover to the levels of dark-adapted leaves after subsequent 3 h in the dark, but they could not recover in the FSBA-treated leaves at SI. Neither the electron transport activity of PS2 nor the D1 protein amount in vivo had significant change after SI without FSBA, whereas FSBA treatment at SI could result in significant decreases in both the PS2 electron transport activity and the D1 protein amount. When thylakoids instead of leaves were used, the PS2 electron transport activity and the D1 protein amount declined more after SI with FSBA than without FSBA. The phosphorylation level of PS2 core proteins increased, while the phosphorylation level of LHC2 proteins was reduced after SI. Also, the phosphorylation of PS2 core proteins could be greatly inhibited by the FSBA treatment at SI. Hence in soybean leaf the LHC2 dissociation is an effective strategy protecting PS2 reaction centres against over-excitation and photodamage by reducing the amount of photons transferred to the centres under SI, and the phosphorylation of PS2 core proteins plays an important role in the dissociation. and Hai-Bo Zhang, Da-Quan Xu.
Addition of nitrate to a suspension of NO3--depleted Chlorella vulgaris cells raised the O2-evolving capacity of the organism by 60%. The rate of O2-evolution under flash irradiation of the depleted cells was drastically reduced, which could be restored by addition of NO3-. The 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)-insensitive O2-evolution, i.e., photosystem (PS) 2 activity of NO3--depleted cells, showed a 75% stimulation by addition of NO3-. PS1-mediated electron transport was also stimulated (50%) by addition of NO3-. Fluorescence yields of the NO3--depleted cells were significantly reduced. A normal fluorescence response was restored by the addition of NO3-. The fluorescence yield of the NO3--depleted and DCMU-treated-cells increased significantly after addition of NO3- ions, indicating a further reduction of the primary acceptor of PS2 (Q). In addition, the low temperature fluorescence emission spectra showed that energy transfer to PS2 and PS1 was much higher when nitrate was present. Hence nitrate accelerates the light-induced charge transfer from the intact O2-evolving system to the primary electron acceptor of PS2 and stimulates the PS1-mediated electron transport. and M. El-Anwar H. Osman, A. H. El-Naggar.
Experiments were carried out to investigate the changes in CO2 assimilation, photon allocation, and photosynthetic electron flux in leaves of cucumber (Cucumis sativus L.) plants after chilling stress. Chilling significantly decreased CO2 assimilation, the energy flux via linear electron transport (J PS2) and non-constitutive thermal dissipation (J NPQ) but increased fluorescence and constitutive thermal dissipation (J f,D) in chilling-sensitive genotype Jinyan No. 4. In contrast, chilling had little effects on J NPQ and J f,D although CO2 assimilation and J PS2 were inhibited in chilling-tolerant genotype Jinchun No. 3. In parallel with the reduction in J PS2, electron flux to oxygenation and carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase all significantly decreased while electron flux to O2 significantly increased, especially in chilling-sensitive genotype. Thermal and fluorescence dissipation were the main energy dissipation pathways whilst water-water cycle was an important electron sink when photosynthetic carbon reduction was suppressed after chilling. Chilling sensitivity of the photosynthetic apparatus was related to the operation of different photoprotection mechanisms. and Z. H. Zhou ... [et al.].
We analyzed the response of potted strawberry tree (Arbutus unedo L.) seedlings exposed to water stress by withholding water for 10 d (WS). Leaf water potential, net CO2 assimilation, and stomatal conductance decreased with increasing water deficit. A 30 % reduction of chlorophyll (Chl) content in the antenna complexes was observed in WS-plants. Simultaneously, a decline of photochemical efficiency (Fv/Fm) occurred as a result of an excess of solar radiation energy when carbon assimilation was limited by stomata closure due to soil water deficit. The non-photochemical quenching of Chl fluorescence (ΦNPQ) significantly increased, as well as the leaf contents of zeaxanthin (Z) and antheraxanthin (A) at the expense of violaxanthin during the WS-period. Elevated predawn contents of de-epoxidized xanthophyll cycle components were associated with a sustained lowering of predawn photosystem 2 efficiency; this suggested an engagement of Z+A in a state primed for energy dissipation. Thus, the ability of strawberry trees to maintain the functionality of the xanthophyll cycle during the Mediterranean summer is an efficient mechanism to prevent irreversible damages to the photosynthetic machinery through thermal energy dissipation in the antenna and the reduction in photochemical efficiency. and R. Baraldi ... [et al.].
Carnivorous plants grow in nutrient-poor habitats and obtain substantial amount of nitrogen from prey. Specialization toward carnivory may decrease the ability to utilize soil-derived sources of nutrients in some species. However, no such information exists for pitcher plants of the genus Nepenthes, nor the effect of nutrient uptake via the roots on photosynthesis in carnivorous plants is known. The principal aim of present study was to investigate, whether improved soil nutrient status increases photosynthetic efficiency in prey-deprived pitcher plant Nepenthes talangensis. Gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously and were correlated with Chl and nitrogen concentration as well as with stable carbon isotope abundance (δ13C) in control and fertilized N. talangensis plants. Net photosynthetic rate (PN) and maximum- (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the plants supplied with nutrients. Biomass, leaf nitrogen, and Chl (a+b) also increased in fertilized plants. In contrast, δ13C did not differ significantly between treatments indicating that intercellular concentration of CO2 did not change. We can conclude that increased root nutrient uptake enhanced photosynthetic efficiency in prey-deprived N. talangensis plants. Thus, the roots of Nepenthes plants are functional and can obtain a substantial amount of nitrogen from the soil. and A. Pavlovič ... [et al.].
Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3-), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24-38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3- and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins. and J. He, L. Qin, S. K. Lee.
The effect of root growth temperature on maximal photosynthetic CO2 assimilation (Pmax), carbohydrate content, 14C-photoassimilate partitioning, growth, and root morphology of lettuce was studied after transfer of the root system from cool root-zone temperature (C-RZT) of 20 °C to hot ambient-RZT (A-RZT) and vice versa. Four days after RZT transfer, Pmax and leaf total soluble sugar content were highest and lowest, respectively, in C-RZT and A-RZT plants. Pmax and total leaf soluble sugar content were much lower in plants transferred from C-to A-RZT (C→A-RZT) than in C-RZT plants. However, these two parameters were much higher in plants transferred from A-to C-RZT (A→C-RZT) than in A-RZT plants. A-RZT and C→A-RZT plants had higher root total soluble sugar content than A→C-RZT and C-RZT plants. Leaf total insoluble sugar content was similar in leaves of all plants while it was the highest in the roots of C-RZT plants. Developing leaves of C-RZT plants had higher 14C-photoassimilate content than A-RZT plants. The A→C-RZT plants also had higher 14C-photoassimilate content in their developing leaves than A-RZT plants. However, more 14C-photoassimilates were translocated to the roots of A-RZT and C→A-RZT plants, but they were mainly used for root thickening than for its elongation. Increases in leaf area, shoot and root fresh mass were slower in C→A-RZT than in C-RZT plants. Conversely, A→C-RZT plants had higher increases in these parameters than A-RZT plants. Lower root/shoot ratio (R/S) in C-RZT than in A-RZT plants confirmed that more photoassimilates were channelled to the shoots than to the roots of C-RZT plants. Roots of C-RZT plants had greater total length with a greater number of tips and surface area, and smaller average diameter as compared to A-RZT plants. In C→A-RZT plants, there was root thickening but the increases in its length, tip number and surface area decreased. The reverse was observed for A→C-RZT plants. These results further supported the idea that newly fixed photoassimilates contributed more to root thickening than to root elongation in A-RZT and C→A-RZT plants. and J. He, L. P. Tan, S. K. Lee.