Although playing an important role in shaping the environment, the mechanisms responsible for runoff initiation and yield in arid and semiarid regions are not yet fully explored. With infiltration-excess overland flow, known also as Hortonian overland flow (HOF) taking place in these areas, the uppermost surface 'skin' plays a cardinal role in runoff initiation and yield. Over large areas, this skin is composed of biocrusts, a variety of autotrophs (principally cyanobacteria, green algae, lichens, mosses) accompanied by heterotrophs (such as fungi, bacteria, archaea), which may largely dictate the infiltration capability of the surface. With most biocrust organisms being capable of excreting extracellular polymeric substances (EPS or exopolymers), and growing evidence pointing to the capability of certain EPS to partially seal the surface, EPS may play a cardinal role in hindering infiltration and triggering HOF. Yet, despite this logic thread, great controversy still exists regarding the main mechanisms responsible for runoff generation (runoff initiation and yield). Elucidation of the possible role played by EPS in runoff generation is the focus of the current review.
Mosses are often overlooked; however, they are important for soil-atmosphere interfaces with regard to water exchange. This study investigated the influence of moss structural traits on maximum water storage capacities (WSCmax) and evaporation rates, and species-specific effects on water absorption and evaporation patterns in moss layers, mosssoil- interfaces and soil substrates using biocrust wetness probes. Five moss species typical for Central European temperate forests were selected: field-collected Brachythecium rutabulum, Eurhynchium striatum, Oxyrrhynchium hians and Plagiomnium undulatum; and laboratory-cultivated Amblystegium serpens and Oxyrrhynchium hians. WSCmax ranged from 14.10 g g–1 for Amblystegium serpens (Lab) to 7.31 g g–1 for Plagiomnium undulatum when immersed in water, and 11.04 g g–1 for Oxyrrhynchium hians (Lab) to 7.90 g g–1 for Oxyrrhynchium hians when sprayed, due to different morphologies depending on the growing location. Structural traits such as high leaf frequencies and small leaf areas increased WSCmax. In terms of evaporation, leaf frequency displayed a positive correlation with evaporation, while leaf area index showed a negative correlation. Moisture alterations during watering and desiccation were largely controlled by species/substrate-specific patterns. Generally, moss cover prevented desiccation of soil surfaces and was not a barrier to infiltration. To understand water’s path from moss to soil, this study made a first contribution.