River runoff and sediment transport are two related random hydrologic variables. The traditional statistical analysis method usually requires those two variables to be linearly correlated, and also have an identical marginal distribution. Therefore, it is difficult to know exactly the characteristics of the runoff and sediment in reality. For this reason, copulas are applied to construct the joint probability distribution of runoff and sediment in this article. The risk of synchronous-asynchronous encounter probability of annual rich-poor runoff and sediment is also studied. At last, the characteristics of annual runoff and sediment with multi-time scales in its joint probability distribution space are simulated by empirical mode decomposition method. The results show that the copula function can simulate the joint probability distribution of runoff and sediment of Huaxia hydrological station in Weihe River well, and that such joint probability distribution has very complex change characteristics at time scales.
The need for a better understanding of factors controlling the variability of soil water content (θ) in space and time to adequately predict the movement of water in the soil and in the interphase soil-atmosphere is widely recognised. In this paper, we analyse how soil properties, surface cover and topography influence soil moisture (θ) over karstic lithology in a sub-humid Mediterranean mountain environment. For this analysis we have used 17 months of θ measurements with a high temporal resolution from different positions on a hillslope at the main recharge area of the Campo de Dalías aquifer, in Sierra de Gádor (Almería, SE Spain). Soil properties and surface cover vary depending on the position at the hillslope, and this variability has an important effect on θ. The higher clay content towards the lower position of the hillslope explains the increase of θ downslope at the subsurface horizon throughout the entire period studied. In the surface horizon (0-0.1 m), θ patterns coincide with those found at the subsurface horizon (0.1-0.35 m) during dry periods when the main control is also exerted by the higher percentage of clay that increases downslope and limits water depletion through evaporation. However, in wet periods, the wettest regime is found in the surface horizon at the upper position of the hillslope where plant cover, soil organic matter content, available water, unsaturated hydraulic conductivity (Kunsat) and infiltration rates are higher than in the lower positions. The presence of rock outcrops upslope the θ sampling area, acts as runoff sources, and subsurface flow generation between surface and subsurface horizons also may increase the differences between the upper and the lower positions of the hillslope during wet periods. Both rock and soil cracks and fissures act disconnecting surface water fluxes and reducing run-on to the lower position of the hillslope and thus they affect θ pattern as well as groundwater recharge. Understanding how terrain attributes, ground cover and soil factors interact for controlling θ pattern on karst hillslope is crucial to understand water fluxes in the vadose zone and dominant percolation mechanisms which also contribute to estimate groundwater recharge rates. Therefore, understanding of soil moisture dynamics provides very valuable information for designing rational strategies for the use and management of water resources, which is especially urgent in regions where groundwater supports human consume or key economic activities.
In the paper there the questions of selection of representative period for the hydrological characteristics assessment are discussed. Also the characteristics of runoff and precipitation for the periods 1931-1980 and 1961-2000 are presented. The main components of water balance in Slovakia are the basis for comparison of both periods. The assessment of development of runoff condition during the last decades is presented. and V referáte sa diskutujú otázky výberu reprezentatívneho obdobia pre stanovenie hydrologických charakteristík. Ďalej sa uvádzajú charakteristiky odtoku a zrážok za obdobia 1931-1980 a 1961-2000. Na základe hodnotenia hlavných komponentov hydrologickej bilancie Slovenska sa obidve obdobia porovnávajú a opisuje sa vývoj odtokových pomerov ostatného obdobia.