In leaves of the mangrove species Avicennia germinans (L.) L. grown in salinities from 0 to 40 ‰, fluorescence, gas exchange, and δ13C analyses were done. Predawn values of Fv/Fm were about 0.75 in all the treatments suggesting that leaves did not suffer chronic photoinhibition. Conversely, midday Fv/Fm values decreased to about 0.55-0.60 which indicated strong down-regulation of photosynthesis in all treatments. Maximum photosynthetic rate (Pmax) was 14.58 ± 0.22 µmol m-2 s-1 at 0 ‰ it decreased by 21 and 37 % in plants at salinities of 10 and 40 ‰, respectively. Stomatal conductance (gs) was profoundly responsive in comparison to Pmax which resulted in a high water use efficiency. This was further confirmed by δ13C values, which increased with salinity. From day 3, after salt was removed from the soil solution, Pmax and gs increased up to 13 and 30 %, respectively. However, the values were still considerably lower than those measured in plants grown without salt addition.
The objective of this study was to evaluate the response of the giant reed (Arundo donax L.) to drought stress at early stages, as well as to determine the effects of limited soil water availability on plant growth, gas exchange, and water-use efficiency. Plantlets of a commercial clone were grown in a greenhouse under two water treatments: at 100% of field capacity and progressive drought for 66 days (until 20% of field capacity). Soil water content, leaf elongation rate, plant water consumption, and gas-exchange parameters were measured throughout the experiment. Total plant biomass, leaf water, and osmotic potential were determined at the end of the experiment. Plant growth and leaf gas-exchange parameters were significantly affected by soil water availability, but only when it was below 40% of field capacity. At early stages, Arundo donax showed drought stress acclimation due to leaf plasticity, stomatal regulation, and osmotic adjustment., A. Romero-Munar, E. Baraza, J. Cifre, C. Achir, J. Gulías., and Obsahuje bibliografii
The effect of Euphorbia scordifolia and Hordeum leporinum competition on leaf area development, radiant energy absorption, and dry matter production was evaluated in a field experiment. Profile measurements (0-0.3, 0.3-0.6, 0.6-0.9, and >0.9 m above ground) of absorbed photosynthetically active radiation (APAR) and leaf area index (LAI) by species were taken at four densities of E. scordifolia (0, 1, 4, and 12 plants per m2). APAR calculated for H. leporinum in mixed communities was 79, 77, and 49 % of the APAR in H. leporinum and LAI was reduced to 81, 65, and 37 %. LAI of H. leporinum was concentrated in the 0.3-0.6 m layer, while the taller E. scordifolia plants had the greatest LAI above 0.6 m. By absorbing radiant energy in the upper canopy, E. scordifolia reduced APAR penetrating to H. leporinum. Measurements of net photosynthetic and transpiration rates, leaf temperature, and stomatal conductance confirmed the importance of competition for PAR for plant growth and metabolism.
Tea tree (Melaleuca alternifolia) canopy was sprayed with low concentration of NaHSO3 or mixture of NaHSO3+ KH2PO4. The treatments significantly enhanced net photosynthetic rate (PN), carboxylation efficiency (CE), and the maximum response of PN to intercellular CO2 concentration. The enhancement of PN by foliar application of low concentrations of bisulfite was due to increasing CE relevant to ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase activity and regeneration rate of RuBP depending on ATP formation. and W.-J. Yang ... [et al.].
The contribution of photosynthesis to yield improvement is important to know in order to determine future breeding strategies. The objectives of this study were to determine the contribution of photosynthesis and water-use efficiency (WUE) to grain yield improvement of facultative wheat (Triticum aestivum L.) cultivars on the Loess Plateau of China released between 1937 and 2004. The grain yield has increased nearly sevenfold during this period. Surprisingly, these increases were not correlated with the rate of photosynthesis per unit of leaf area when the cultivars were planted and managed in the same environment. The increases were also not correlated with transpiration rate, stomatal conductance, or WUE, except at the jointing stage. The total increase in photosynthesis may be due to enlargement of photosynthetic area and photosynthesis duration. The grain yield was positively correlated with the number of grains per unit of area (r = 0.855, P<0.05), harvest index (HI) (r = 0.885, P<0.01), and thousand-grain mass (r = 0.879, P<0.01). The increase in grain yield was limited by the grain number and the grain size (sink-limited) and the yield improvement was attributed to a rise in HI over the last 70 years in a highland agricultural system in China., X. Chen, M. -D. Hao., and Obsahuje seznam literatury
Maize plants of CPB2 and CPB8 hybrids were kept under water deficit for 22 d. In the CPB8 hybrid, leaf rolling initiated at the 9th d of water deficit period, while in CPB2 hybrid it was at the 15th d. Both hybrids showed leaf rolling initiation at the same leaf water potential, ΨW of -0.480±0.095 MPa. At leaf rolling initiation, the leaf osmotic potential, ΨS was -0.730±0.085 MPa in CPB8 and 0.630±0.110 MPa in CPB2. The leaf temperature and stomatal conductance were higher in CPB8 than in CPB2. Values of leaf ΨW, ribulose-1,5-bisphosphate carboxylase activity, chlorophyll content, and specific leaf area were similar in both hybrids. Phosphoenolpyruvate carboxylase activity and protein content were lower in the CPB2 hybrid than in CPB8. In both hybrids leaf rolling initiation was associated with: (1) higher leaf temperature, with leaf rolling effect related to leaf temperature reduction, and (2) lower leaf ΨS, related to osmotic adjustment as an additional component of drought-tolerance strategy. and D. Fernandez, M. Castrillo.
Mesophyll conductance (gm) is essential to determine accurate physiological parameters used to model photosynthesis in forest ecosystems. This study aimed to determine the effects of time of day on photosynthetic parameters, and to assess the effect of using either intercellular CO2 concentration (Ci) or chloroplast CO2 concentration (Cc), on maximum carboxylation velocity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), Vcmax. We used Amazonian saplings of Myrcia paivae and Minquartia guianensis. Photosynthetic parameters were measured using an infrared gas analyzer (IRGA); gm was determined using both gas exchange and chlorophyll (Chl) a fluorescence and gas-exchange data alone. Leaf thickness (LT) and specific leaf area (SLA) were also measured. Air temperature, relative humidity or understory light did not correlate with gm and on average daily IRGA-fluorometer-determined gm was 0.04 mol(CO2) m-2 s-1 for M. paivae and 0.05 mol(CO2) m-2 s-1 for M. guianensis. Stomatal conductance (gs), gm, electron transport rate (JF), and light-saturated net photosynthetic rate (PNmax) were lower in the afternoon than in the morning. However, no effect of time of day was observed on Vcmax. LT and SLA did not affect any of the examined parameters.
IRGA-determined g m was almost the double of the value obtained using the IRGA-fluorescence method. Vcmax values determined using Cc were about 25% higher than those obtained using Ci, which highlighted the importance of using Cc in Vcmax calculation. Decline in PNmax at the end of the afternoon reflected variations in gs and gm rather than changes in Vcmax. Diurnal variation in gm appeared to be associated more with endogenous than with atmospheric factors. and H. C. S. Nascimento, R. A. Marenco.
We measured the diurnal changes in net photosynthetic rate (PN) and stomatal conductance (gs) of the leaves of a liana, Enkleia malaccensis Griff. (Thymelaeaceae), at the canopy level in the lowland tropical rainforest at Pasoh, Peninsular Malaysia. The measurements were made from a canopy walkway system, 30 m from the ground for 3 d in March 2003. PN increased with increasing photosynthetically active radiation (PAR) before noon, though PN was not enhanced by the strong radiation hit in the afternoon. Plotting g s at saturating PAR (>0.5 mmol m-2 s-1) against the vapour pressure deficit (VPD) failed to reveal a significant correlation between VPD and gs, and gs became very low at VPD >2.5 kPa. The relationship between PN and gs was fitted on the same regression line irrespective of measuring day, indicating that this relationship was not influenced by either VPD or leaf temperature (T L). Therefore, in the liana E. malaccensis, an increase in VPD leads to partial stomatal closure and, subsequently, reductions in PN and the midday depression of PN of this plant. and A. C. Tay ... [et al.].
A mathematical model for photoinhibition of leaf photosynthesis was developed by formalising the assumptions that (1) the rate of photoinhibition is proportional to irradiance; and (2) the rate of recovery, derived from the formulae for a pseudo first-order process, is proportional to the extent of inhibition. The photoinhibition model to calculate initial photo yield is integrated into a photosynthesis-stomatal conductance (gs) model that combines net photosynthetic rate (PN), transpiration rate (E), and gs, and also the leaf energy balance. The model was run to simulate the diurnal courses of PN, E, gs, photochemical efficiency, i.e., ratio of intercellular CO2 concentration and CO2 concentration over leaf surface (Ci/Cs), and leaf temperature (T1) under different irradiances, air temperature, and humidity separately with fixed time courses of others. When midday depression occurred under high temperature, gs decreased the most and E the least. The duration of midday depression of gs was the longest and that in E the shortest. E increased with increasing vapour pressure deficit (VPD) initially, but when VPD exceeded a certain value, it decreased with increasing VPD; this was caused by a rapid decrease in gs. When air temperature exceeded a certain value, an increase in solar irradiance raised T1 and the degree of midday depression. High solar radiation caused large decrease in initial photon efficiency (α). PN, E, and gs showed reasonable decreases under conditions causing photoinhibition compared with non-photoinhibition condition under high irradiance. The T1 under photoinhibition was higher than that under non-photoinhibition conditions, which was evident under high solar irradiance around noon. The decrease in Ci/Cs at midday implies that stomatal closure is a factor causing midday depression of photosynthesis. and Qiang Yu, J. Goudriaan, Tian-Duo Wang.
Net photosynthetic rate (PN) was studied in field-grown peanut cv. GG 2 in relation to leaf position, time of day, reproductive-sink, and phenophase. In general, PN remained higher in the upper leaves (first from top to the fourth) than in the lower leaves (fifth to eighth). The mean PN of the leaves situated upper and the leaves lower in the canopy increased from the morning, reached a maximum during noon hours, and decreased thereafter. Between 09:00 to 10:00 h, PN, stomatal conductance (gs), and transpiration rate (E) in the upper leaves were higher than in the lower leaves, but between 12:00 and 13:00 h, these activities increased significantly in the lower leaves. Highest PN was found during pod-development phase. Removal of flowers, and hence of active reproductive-sink, decreased plant height and number of leaves, and initiated accumulation of photosynthates in the leaves. The PN per unit leaf area in plants with reproductive-sink (WRS) was similar to those without reproductive-sink (WORS). However, leaf area of WORS plants decreased significantly, mainly due to the reduction in number of leaves. No feed-back inhibition of PN (per unit leaf area) was found despite accumulation of photosynthates in the leaves as a result of removal of the active reproductive-sink. and P. C. Nautiyal, V. Ravindra, Y. C. Joshi.