V tomto článku podáváme syntézu poznatků komplexního výzkumu lučních prameništních slatinišť Západních Karpat, kde od r. 2010 intenzivně zkoumáme také vodní bezobratlé. Zjistili jsme neobvykle druhově bohatá společenstva vodního hmyzu s vysokým podílem stanovištních specialistů a s řadou druhů nových pro studované území. Z obecných ekologických zákonitostí jsme prokázali vysoký vliv chemismu vody na druhovou skladbu dvoukřídlého hmyzu (Diptera) a zcela převažující vliv lokálních faktorů na výskyt taxonů schopných aktivního letu., In this paper we summarise the results of complex research at the Western Carpathian treeless spring fens, in which we have also studied aquatic invertebrates since 2010. We found extraordinarily species-rich assemblages of aquatic insects with a high proportion of habitat specialists and many species previously unknown for the study area. Among general ecological patterns, we confirmed the high importance of water chemistry for species composition of Diptera assemblages and a prevailing role of environmental-based processes on the distribution of taxa with flying adults., and Michal Horsák ... [et al.].
Water repellency is a relative (and a little misleading) term because no surface actually exerts a repelling force on a liquid. There is always some attraction between a liquid and any solid. The affinity (hydrophilicity) or repellency (hydrophobicity) between water and solid surfaces originates from mutual attractive forces (adhesion) and the attraction between the water molecules (cohesion). Soil water repellency is generally attributed to hydrophobic organic matter coating soil particles or accumulating in the soil environment. The definition of hydrophobicity and hydrophilicity, based on the contact angle α between water and a solid, reads: if α < 90°, the solid is wettable, if α ≥ 90°, the solid is water repellent (Adamson, 1990). Another definition of hydrophobicity and hydrophilicity, based on the surface-free energy, reads: solid surfaces with a surface-free energy σsa > 72.75 mN m-1 attract water and are therefore hydrophilic. Solid surfaces with a surface-free energy σsa < 72.75 mN m-1 are hydrophobic (Doerr et al., 2000). Soil water repellency (WR) is characterised using three parameters: severity (degree) of WR, persistence of WR, and index of WR. The most frequently used techniques for the severity and persistence of WR measurements are MED (molarity of ethanol droplet) and WDPT (water drop penetration time) test, respectively. and Vodoodpudivosť je relatívny (a trochu zavádzajúci) pojem, pretože žiadny povrch tuhej látky nepôsobí na kvapalinu odpudivou, ale vždy príťažlivou silou. Afinita (hydrofilnosť) alebo odpudivosť (hydrofóbnosť) medzi vodou a povrchom tuhej látky vzniká zo vzájomných príťažlivých síl (adhézia) a príťažlivých síl medzi molekulami vody (kohézia). Vodoodpudivosť pôdy sa všeobecne pripisuje hydrofóbnej organickej hmote, ktorá buď pokrýva pôdne častice alebo je akumulovaná v pôdnom prostredí. Definícia hydrofóbnosti a hydrofilnosti, založená na veľkosti uhla omáčania, znie: ak je uhol omáčania α menší ako 90°, tuhá látka je zmáčavá, ak je väčší alebo sa rovná 90°, tuhá látka je vodoodpudivá (Adamson, 1990). Iná definícia hydrofóbnosti a hydrofilnosti, založená na povrchovej voľnej energii, znie: povrch tuhej látky s povrchovou voľnou energiou σsa > 72,75 mN m-1 je hydrofilný a povrch tuhej látky s povrchovou voľnou energiou σsa < 72,75 mN m-1 je hydrofóbny (Doerr et al., 2000). Vodoodpudivosť je charakterizovaná tromi parametrami: veľkosť, stálosť a index vodoodpudivosti. Najčastejšie používanou metódou na meranie veľkosti vodoodpudivosti pôdy je MED test, v ktorom sa povrchová voľná energia pôdy určuje z molarity kvapky etanolu, ktorá vnikne do pôdy za určitý čas. Najčastejšie používanou metódou na meranie stálosti vodoodpudivosti pôdy je WDPT test, pri ktorom sa meria čas, potrebný na infiltráciu kvapky destilovanej vody do pôdy.
The main hydrological and geomorphological impacts of soil water repellency are: (a) reduced infiltration capacity; (b) increased overland flow; (c) spatially localised infiltration and/or percolation, often with fingered flow development; (d) effects on the three-dimensional distribution and dynamics of soil moisture, evapotranspiration, as well as plant germination and growth; (e) enhanced streamflow responses to rainstorm; (f) enhanced total streamflow; and (g) enhanced soil erosion. Surfactants (wetting agents), clay, and municipal solid waste compost were found to be successful in mitigation of the consequences of soil water repellency. and Hlavné hydrologické a geomorfologické dôsledky vodoodpudivosti sú: (a) zmenšenie rýchlosti infiltrácie vody do pôdy, (b) zväčšenie povrchového prúdenia, (c) priestorovo lokalizovaná infiltrácia a/alebo perkolácia a prúdenie prstami, (d) účinky na trojrozmerné rozdelenie a dynamiku pôdnej vlhkosti, evapotranspiráciu, ako aj klíčenie a rast rastlín, (e) zväčšenie odtoku po búrke, (f) zväčšenie celkového odtoku a (g) zväčšenie erózie pôdy. Dôsledky vodoodpudivosti pôdy možno zmierniť aplikáciou povrchovo aktívnych látok (zmáčadiel), ílu a kompostu z tuhého komunálneho odpadu.