Near-isogenic lines of maize varying in their genes for flavonoid biosynthesis were utilized to examine the effects of foliar flavonoids and nutrient deficiency on maximum net photosynthetic rate (PN) and chlorophyll (Chl) fluorescence (Fv/Fm) in response to ultraviolet-B (UV-B) radiation. Plants with deficient (30 to 70 % lower N, K, Mn, Fe, and Zn) and sufficient nutrients were exposed to four irradiation regimes: (1) no UV-B with solar photosynthetically active radiation (PAR), (2) two day shift to ambient artificial UV-B, 8.2-9.5 kJ m-2 d-1 (21-25 mmol m-2 d-1); (3) continuous ambient artificial UV-B; (4) continuous solar UV-B in Hawaii 12-18 kJ m-2 d-1 (32-47 mmol m-2 d-1). The natural ratio of UVB: PAR (0.25-0.40) was maintained in the UV-B treatments. In the adequately fertilized plants, lines b and lc had higher contents of flavonoids and anthocyanins than did lines hi27 and dta. UV-B induced the accumulation of foliar flavonoids in lines hi27 and b, but not in the low flavonoid line dta or in the high flavonoid line lc. In plants grown on deficient relative to adequate nutrients, flavonoid and anthocyanin contents decreased by 30-40 and 40-50 %, respectively, and Chl a and Chl b contents decreased by 30 and 70 %, respectively. The UV-B treatments did not significantly affect PN and Fv/Fm in plants grown on sufficient nutrients, except in the low flavonoid lines dta and hi27 in which PN and Fv/Fm decreased by ∼15 %. PN, Fv/Fm, and stomatal conductance decreased markedly (20-30 %) in all lines exposed to UV-B when grown on low nutrients. The decrease in Fv/Fm was 10 % less in higher flavonoid lines b and lc. The photosynthetic apparatus of maize readily tolerated ambient UV-B in the tropics when plants were adequately fertilized. In contrast, ambient UV-B combined with nutrient deficiency significantly reduced photosynthesis in this C4 plant. Nutrient deficiency increased the susceptibility of maize to UV-B-induced photoinhibition in part by decreasing the contents of photoprotective compounds. and T. S. L. Lau ... [et al.].
The portable chlorophyll (Chl) meter (CL-01, Hansatech) has been successfully used for a rapid and direct estimation of total Chl content in the leaves of some crops. We compared CL-01 meter readings (Chl value) and Chl contents in leaves of Zea mays, Cucumis sativus, Raphanus sativus, and Ceiba speciosa. Chl index was linearly and positively correlated to Chl content in all the species. and D. Cassol ... [et al.].
Direct effects and after-effects of soil drought for 7 and 14 d were examined on seedling dry matter, leaf water potential (ψ), leaf injury index (LI), and chlorophyll (Chl) content of drought (D) resistant and sensitive triticale and maize genotypes. D caused higher decrease in number of developed leaves and dry matter of shoots and roots in the sensitive genotypes than in the resistant ones. Soil D caused lower decrease of ψ in the triticale than maize leaves. Influence of D on the Chl b content was considerably lower than on the Chl a content. In triticale the most harmful D impact was observed for physiologically younger leaves, in maize for the older ones. A period of 7-d-long recovery was too short for a complete removal of an adverse influence of D. and M. T. Grzesiak ... [et al.].
Influence of drought (D) on changes of leaf water potential (Ψ) and parameters of gas exchange in D-resistant and D-sensitive genotypes of triticale and maize was compared. Soil D (from -0.01 to -2.45 MPa) was simulated by mannitol solutions. At -0.013 MPa significant differences in Ψ, net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and internal CO2 concentration (Ci) of D-resistant and D-sensitive triticale and maize genotypes were not found. Together with the increase in concentration of the mannitol solution the impact of D on E and gs for D-sensitive genotypes (CHD-12, Ankora) became lower than for the D-resistant ones (CHD-247, Tina). Inversely, impact of D on Ψ was higher in D-sensitive than D-resistant genotypes. From 1 to 3 d of D, a higher decrease in PN was observed in D-resistant genotypes than in the D-sensitive ones. Under prolonged D (5-14 d) and simultaneous more severe D the decrease in PN was lower in D-resistant than in D-sensitive genotypes. Changes in Ψ, PN, E, and gs caused by D in genotypes differing in the drought susceptibility were similar for triticale and maize. Compared to control plants, increase of Ci was different for triticale and maize genotypes. Hence one of the physiological reasons of different susceptibility to D between sensitive and resistant genotypes is more efficient protection of tissue water status in resistant genotypes reflected in higher decrease in gs and limiting E compared to the sensitive ones. Other reason, observed in D-resistant genotypes during the recovery from D-stress, was more efficient removal of detrimental effects of D. and M. T. Grzesiak, S. Grzesiak, A. Skoczowski.
The effects of Mn-deficiency on CO2 assimilation and excitation energy distribution were studied using Mn-starved maize leaves. Mn-deficiency caused about 70 % loss in the photon-saturated net photosynthetic rate (PN) compared to control leaves. The loss of PN was associated with a strong decrease in the activity of oxygen evolution complex (OEC) and the linear electron transport driven by photosystem 2 (PS2) in Mn-deficienct leaves. The photochemical quenching of PS2 (qP) and the maximum efficiency of PS2 photochemistry (Fv/Fm) decreased significantly in Mn-starved leaves under high irradiance, implicating that serious photoinhibition took place. However, the 'high-energy' fluorescence quenching (qE) decreased, which was associated with xanthophyll cycle. The results showed that the pool of de-epoxidation components of the xanthophyll cycle was lowered markedly owing to Mn deficiency. Linear electron transport driven by PS2 de-creased significantly and was approximately 70 % lower in Mn-deficient leaves than that in control, indicating less trans-thylakoid pH gradient was built in Mn deficient leaves. We suggest that the decrease of non-radiative dissipation depending on xanthophyll cycle in Mn-starved leaves is a result of the deficiency of trans-thylakoid pH gradient. and C. D. Jiang, H. Y. Gao, Q. Zou.
A total of 23 genotypes belonging to seven tropical food yams and two wild relative species of different origin and coming from two sampling ecological zones (the Republic of Benin in Africa and Guadeloupe in the Caribbean) was analysed for their 13C content. The δ13C values for all yam samples (from -25.39 and -30.07 ‰) indicated that all species had a C3 photosynthetic type. and D. Cornet, J. Sierra, R. Bonhomme.
We investigated seasonal patterns of photosynthetic responses to CO2 concentrations in Spartina alterniflora Loisel, an aerenchymous halophyte grass, from a salt marsh of the Bay of Fundy (NB, Canada), and from plants grown from rhizome in controlled-environment chambers. From late May to August, CO2 compensation concentrations (Γ) of field-grown leaves varied between 2.5-10.7 cm3(CO2) m-3, with a mean of 5.4 cm3(CO2) m-3. From September onwards field leaves showed CO2 compensation concentrations from 6.6-21.1 cm3(CO2) m-3, with a mean of 13.1 cm3 m-3 well into the C3-C4 intermediate range. The seasonal variability in Γ did not result from changing respiration, but rather from a sigmoidal response of net photosynthetic rate (PN) to applied CO2 concentration, found in all tested leaves but which became more pronounced late in the season. One explanation for the sigmoidal response of PN to external CO2 concentration could be internal delivery of CO2 from roots and rhizomes to bundle sheath cells via the aerenchyma, but the sigmoidal responses in S. alterniflora persisted out to the tips of leaves, while the aerenchyma extend only to mid-leaf. The sigmoidicity persisted when CO2 response curves were measured from low to high CO2, or from high to low CO2, and even when prolonged acclimation times were used at each CO2 concentration. and M. O. Bärlocher ... [et al.].
Maize (Zea mays) seedlings were exposed for 6 h to strong irradiance (1 000 μmol m-1 s-1 of PPFD) at 5, 12, 17, or 25 °C, followed by an exposure to the darkness for 6 h at 22 °C. Leaf chlorophyll fluorescence, net photosynthetic rate (PN), and the amount of superoxide radicals (O2-⋅) in relation to chilling-induced photoinhibition were investigated. During the photophase, a good correlation (r=-0.879) was observed between ΦPS2 (relative quantum efficiency of PS2 electron transport) and the amount of O2-⋅. Treatment with exogenous O2-⋅ reduced the PN and ΦPS2 as the chilling stress did, that was inhibited by specific scavenger of O2-⋅. Hence chilling-induced photoinhibition might be due to the production of O2-⋅. In contrast, in the dark period, PN and ΦPS2 of the seedlings treated with the exogenous O2-⋅ were enhanced, but they were inhibited by the specific scavenger of O2-⋅, showing the photoprotective role of O2-⋅ in the recovery phase. Furthermore, in terms of the effect of exogenous O2-⋅ on the xanthophyll cycle, the O2-⋅ production suggested a promotion effect for the de-epoxidation of violaxanthin during the photophase, the epoxidation of zeaxanthin at the dark stage, and the increase of the xanthophyll pool both in the photophase and dark phase, resulting in an enhancement of the ability of non-photochemical quenching to avoid or alleviate the damage to photosynthetic apparatus. and D. Ke, G. Sun, Y. Jiang.
On the first day after foliar application, chitosan pentamer (CH5) and chitin pentamer (CHIT5) decreased net photosynthetic rate (PN) of soybean and maize, however, on subsequent days there was an increase in PN in some treatments. CH5 caused an increase in maize PN on day 3 at 10-5 and 10-7 M; the increases were 18 and 10 % over the control plants. This increase was correlated with increases in stomatal conductance (gs) and transpiration rate (E), while the intercellular CO2 concentration (Ci) was not different from the control plants. PN of soybean plants did not differ from the control plants except for treatment CH5 (10-7 M) which caused an 8 % increase on day 2, along with increased gs, E, and Ci. On days 5 and 6 the CHIT5 treatment caused a 6-8 % increase in PN of maize, which was accompanied by increases in gs, E, and Ci. However, there was no such increase for soybean plants treated with CHIT5. In general, foliar application of high molecular mass chitin (CHH) resulted in decreased PN, particularly for 0.010 % treated plants, both in maize and soybean. Foliar applications of chitosan and chitin oligomers did not affect (p > 0.05) maize or soybean height, root length, leaf area, shoot or root or total dry mass. and W. M. Khan, B. Prithiviraj, D. L. Smith.
An influence of soil drought (7 or 14 d) and 7 d recovery on changes of leaf fluorescence excitation spectra at wavelengths of 450, 520, 690, and 740 nm (F450, F520, F690, F740) for drought resistant and sensitive genotypes of triticale and maize was compared. In non-stressed plants the differences between maize and triticale were observed for F450 and F520, but not for F690 and F740. Drought caused the increase in F450, F520, and F690 and this increase was more distinct for drought sensitive genotypes. After re-hydration, chlorophyll fluorescence mostly recovered to values of control plants. Drought caused significant increase in F690/F740 but not in F450/F690 and F450/F520. For triticale, highest increase in F690/F740 was observed in the 4th and 7th leaves of resistant genotype and contrarily in maize for the sensitive one. After recovery, the F450/F520, F450/F690, and F690/F740 ratios mostly returned to values of control plants. and M. T. Grzesiak ... [et al.].