Three tropical range grasses (Cenchrus ciliaris, Dichanthium annulatum, and Panicum antidotale) and two range legumes [Macroptilium atropurpureum (siratro) and Stylosanthes hamata (stylo)] were grown under four irradiances, i.e. 100 (I100, control), 75 (I75), 50 (I50), and 25 (I25) % of full sunlight. Accumulation of chlorophyll (Chl) b increased but that of Chl a decreased under low irradiances. The greater accumulation of Chl (a+b) in grasses (particularly in D. annulatum and P. antidotale) under shade predicted their shade adaptability. Among legumes Stylosanthes was more adaptive to the shade than Macroptilium due to its higher accumulation of Chl (a+b). Significant difference in the accumulation of carotenoids under I25 over I100 was observed in all the species, which shows the increase in quality of the fodder under limited irradiance. There was a significant decrease in soluble protein content in C. ciliaris under I75, however, no significant difference in protein content was observed under I50 and I25, which was also reflected in the SDS pattern with the reduction in content of polypeptides at I75 and following increase at I50 and I25. This was possibly due to reduction of light-induced protein at I75 and then expression of the stress-induced protein at further reduction of irradiance. Peroxidase activity in C. ciliaris increased with the decrease in irradiance and its isozyme pattern showed differences among all treatments, which indicated the role of different peroxidase isoforms at different irradiances. and M. J. Baig ... [et al.].
We evaluated the growth and development of the medicinal species Pothomorphe umbellata (L.) Miq. under different shade levels (full sun and 30, 50, and 70 % shade, marked as I100, I70, I50, and I30, respectively) and their effects on gas exchange and activities of antioxidant enzymes. Photosynthetically active radiation varied from 1 254 µmol m-2 s-1 at I100 to 285 µmol m-2 s-1 at I30. Stomatal conductance, net photosynthetic rate, and relative chlorophyll (Chl) content were maximal in I70 plants. Plants grown under I100 produced leaves with lower Chl content and signs of chlorosis and necrosis. These symptoms indicated Chl degradation induced by the generation of reactive oxygen species. Stress related antioxidant enzyme activities (Mn-SOD, Fe-SOD, and Cu/Zn-SOD) were highest in I100 plants, whereas catalase activity was the lowest. Hence P. umbellata is a shade species (sciophyte), a feature that should be considered in reforestation programs or in field plantings for production of medicinal constituents. and J. A. Marchese ... [et al.].
Foliage of Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) was collected in a mixed pine/oak forest at canopy positions differing in radiation environment. In both species, chlorophyll (Chl) a/b ratios were higher in foliage of canopy positions exposed to higher irradiance as compared to more shaded crown layers. Throughout the growing season, pine needles exhibited significantly lower Chl a/b ratios than oak leaves acclimated to a similar photon availability. Hence, pine needles showed shade-type pigment characteristics relative to foliage of oak. At a given radiation environment, pine needles tended to contain more neoxanthin and lutein per unit of Chl than oak leaves. The differences in pigment composition between foliage of pine and oak can be explained by a higher ratio of outer antennae Chl to core complex Chl in needles of P. sylvestris which enhances the efficiency of photon capture under limiting irradiance. The shade-type pigment composition of pine relative to oak foliage could have been due to a reduced mesophyll internal photon exposure of chloroplasts in needles of Scots pine, resulting from their xeromorphic anatomy. Hence, the higher drought tolerance of pine needles could be achieved at the expense of shade tolerance. and U. Hansen, J. Schneiderheinze, B. Rank.
Relationship of leaf anatomy with photosynthetic acclimation of Valeriana jatamansi was studied under full irradiance [FI, 1 600 μmol(PPFD) m-2 s-1] and net-shade [NS, 650 μmol(PPFD) m-2 s-1]. FI plants had thicker leaves with higher respiration rate (RD), nitrogen content per unit leaf area, chlorophyll a/b ratio, high leaf mass per leaf area unit (LMA), and surface area of mesophyll cell (Smes) and chloroplasts (Sc) facing intercellular space than NS plants. The difference between leaf thickness of FI and NS leaves was about 28 % but difference in photon-saturated rate of photosynthesis per unit leaf area (PNmax) was 50 %. This indicates that PNmax can increase to a larger extent than the leaf thickness with increasing irradiance in V. jatamansi. Anatomical studies showed that the mesophyll cells of FI plants had no open spaces along the mesophyll cell walls (higher Sc), but in NS plants wide open spaces along the mesophyll cell wall (lower Sc) were found. Positive correlation between Sc and PNmax explained the higher PNmax in FI plants. Increase in mesophyll thickness increased the availability of space along the mesophyll cell wall for chloroplasts (increased Sc) and hence PNmax was higher in FI plants. Thus this Himalayan species can acclimate to full sunlight by altering leaf anatomy and therefore may be cultivated in open fields. and S. Pandey, R. Kushwaha.
This paper reports effects of ultraviolet B (UVB) radiation on leaf anatomy and contents of chlorophyll and carotenoids, as well as photosynthetic parameters, in young sporophytes of Acrostichum danaeifolium Langsd. & Fisch. (Polypodiopsida, Pteridaceae) exposed to UV radiation treatments for 1 h daily for six weeks. The leaves showed large aerenchyma and present chloroplasts in both epidermises. After cultivation under PAR + UVA + UVB, leaves showed curling and malformed stomata on the abaxial face. After the UV treatment, chloroplasts in leaves were arranged against the inner wall of the epidermal cells. Transmission electron microscopy analysis showed some dilated thylakoids and plastoglobuli in chloroplasts and vesicles containing phenolic compounds in the cytoplasm. Differences were not observed between control and UV-treated plants in their contents of chlorophylls, carotenoids, and photosynthetic parameters. A. danaeifolium grown in sunny mangrove environment seems to have mechanisms preventing photosystem damage., A. M. Fonini, J. B. Barufi, É. C. Schmidt, A. C. Rodrigues, Á. M. Randi., and Obsahuje bibliografii
The effects of N and P deficiency, isolated or in combination, on leaf gas exchange and fast chlorophyll (Chl) fluorescence emission were studied in common bean cv. Negrito. 10-d-old plants grown in aerated nutrient solution were supplied with high N (HN, 7.5 mol m-3) or low N (LN, 0.5 mol m-3), and also with high P (HP, 0.5 mol m-3) or low P (LP, 0.005 mol m-3). Regardless of the external P supply, in LN plants the initial fluorescence (F0) increased 12 % in parallel to a quenching of about 14 % in maximum fluorescence (Fm). As a consequence, the variable to maximum fluorescence ratio (Fv/Fm) decreased by about 7 %, and the variable to initial fluorescence ratio (Fv/F0) was lowered by 25 % in relation to control plants. In LP plants, Fv/Fm remained unchanged whilst Fv/F0 decreased slightly as a result of 5 % decline in Fm. Under N deficiency, the net photosynthetic rate (P N) halved at 6 d after imposition of treatment and so remained afterwards. As compared to LN plants, P N declined in LP plants latter and to a less extent. From 12 d of P deprivation onwards. P N fell down progressively to display rates similar to those of LN plants only at the end of the experiment. The greater P N in LP plants was not reflected in larger biomass accumulation in relation to LN beans. In general, P and N limitation affected photosynthesis parameters and growth without showing any synergistic or additive effect between deficiency of both nutrients. and J. D. Lima, P. R. Mosquim, F. M. da Matta.
We related leaf physiological traits of four grassland species (Poa pratensis, Lolium perenne, Festuca valida, and Taraxacum officinale), dominant in a Mediterranean grassland, to their origin and success at community level. From early May to mid-June 1999, four leaf samplings were done. Species originating from poor environments (P. pratensis, F. valida) had low carbon isotope discrimination (Δ), specific leaf area (SLA), leaf water and mineral contents, and net photosynthetic rate on mass basis (Pmass) but high chlorophyll content. The reverse traits were evident for the fast-growing species (L. perenne, T. officinale). Under the resource-limiting conditions (soil nitrogen and water) of the Mediterranean grassland, the physiological traits of P. pratensis and F. valida showed to be more adapted to these conditions leading to high species abundance and dominance. and J. T. Tsialtas, T. S. Pritsa, D. S. Veresoglou.
Changes in chlorophyll (Chl) a+b and a/b, senescence patterns during Chl loss and changes in net photosynthetic rate (P^) of four leaf flushes in Quercus acutissima and Q. serrata were studied. Emergent current-year leaves were classified according to the order of shoot growth flushes (first to fourth flush groups). Senescence patterns showed that leaf fall started from the leaf cohorts of the first flush group (the "oldest" leaf cohorts) which cuhninated upwards to the fourth leaf flush group (the "yoímgest" leaf cohorts). Senescence during Chl loss was accompanied by a decline in Pf^. A strong influence by the leaf flushing phenomenon on senescence was found which limited leaf bearing period and duration of Having large total leaf area and moderately long duration, tiie third and second leaf flush groups reflected the highest photosynthetic potential. This may be a positive attribute since the duration by which these plants maximize the use of its assimilatory organs is an important factor for their carbon fixation.
A cyanobacterium containing phycobiliproteins with far-red acclimation was isolated from Pozas Rojas, Cuatro Ciénegas, México. It was named Leptolyngbya CCM 4 after phylogenetic analysis and a description of its morphological characteristics. Leptolyngbya was grown in far-red light. Sucrose-gradient analysis of the pigments revealed two different colored bands of phycobiliproteins. A band at 60% sucrose was a phycocyanin containing phycobilisome; at 35% sucrose, a new type of phycobiliprotein absorbed at 710 nm. SDS-PAGE revealed the presence of two types of core-membrane linkers. Analysis of the hydrophobic pigments extracted from the thylakoid membranes revealed Chl a, d, and f. The ratio of Chl f/a was reversibly changed from 1:12-16 under far-red light to an undetectable concentration of Chl f under white light. Cuatro Ciénegas, a place surrounded by the desert, is a new ecosystem where a cyanobacterium, which grows in farred light, was discovered., C. Gómez-Lojero, L. E. Leyva-Castillo, P. Herrera-Salgado,
J. Barrera-Rojas, E. Ríos-Castro, E. B. Gutiérrez-Cirlos., and Obsahuje bibliografické odkazy
Two kinds of cecidomyiid galls induced by Daphnephila on Machilus thunbergii Sieb. & Zucc. leaves at various developmental stages, i.e., young, growing, and mature, were analyzed for their biochemical composition of photosynthetic pigment-protein complexes located in thylakoid membranes using the Thornber and MARS electrophoretic fractionation systems. Both kinds of galls were totally deficient in the pigment-protein complexes CP1, and A1, AB1, and AB2 through the whole period of gall formation. Immunoblotting of antibody against light-harvesting complex 2b (LHC2b) apoprotein confirmed this deficiency in gall's lifetime, which never recovered under any condition. Electron microscopy demonstrated that already at the early developmental stage the gall chloroplasts had thylakoid morphology like that in a normal leaf. and C. M. Yang ... [et al.].