Predicting the effects of increased ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion on temperate desert ecosystems requires better knowledge of the ecophysiological response of common moss species. The aim of the current work was to determine whether elevated UV-B radiation affected photosynthetic performance and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. In laboratory experiments, Bryum argenteum and Didymodon vinealis, which show microdistributions and are dominant in soil crusts at the Tengger Desert, Northern China, were subjected to four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. The results showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), pigment contents, soluble protein contents, and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results indicated that B. argenteum was probably more sensitive to supplementary UV-B radiation than D. vinealis. Therefore, we propose the use of B. argenteum crusts as a bioindicator of responses to elevated UV-B radiation., R. Hui, X. R. Li, R. L. Jia, L. C. Liu, R. M. Zhao, X. Zhao, Y. P. Wei., and Obsahuje bibliografii
Elements not usually included in culture medium formulations, such as selenium (Se), may have beneficial effects on micropropagated plants. We evaluated the effects of Se on the physiological and anatomical responses of Alcantarea imperialis during in vitro culture. Plants were cultured in a medium containing a gradient of Se concentrations (0, 4, 8, 16, or 32 µM Se). After 56 d, the growth traits, chlorophyll a fluorescence, and root and leaf anatomy were analyzed. The fresh mass declined at the highest Se concentration. Higher Se concentrations induced bigger stomata, while the stomatal density decreased. Plants cultured with Se had improved PSII and PSI electron transport. This led to higher values of the total performance index. Thus, Se-induced plants showed a higher electron transport dynamics and energy conservation from water to PSI and developed anatomical traits that can favor tolerance to water deficit.
Unlike mulberry (Morus alba, M.a.), paper mulberry (Broussonetia papyrifera, B.p.) can acclimate to Karst soil and incline to alien invasion. The photosynthetic parameters, diurnal changes of carbonic anhydrase, and chlorophyll fluorescence induction, and water potential were measured on sunny days (SD) and cloudy days (CD). Photosynthetic midday depression occurred in B.p. but not in M.a. The irradiance-and CO2-saturated photosynthetic rates of B.p. were significantly higher than those of M.a. There was no significant difference in water use efficiency between the two species on a SD. The maximum fluorescence, maximum quantum yield, photochemical quenching, and relative electron transport rate in the leaves of B.p. were much higher than those in M.a. The activity of carbonic anhydrase (CA) of B.p., on either an SD or a CD, was much greater than that of M.a. Higher transpiration rate (E) and net photosynthetic rate (PN) of B.p. resulted in the lack of water in mesophyll cells. Although a higher CA activity of B.p. supplied both water and CO2 for the photosynthesis of mesophyll cells, water in mesophyll cells was the factor limiting photosynthesis, and the intercellular CO2 concentration of B.p. was high and stable. and Y.-Y. Wu ... [et al.].
In order to investigate the effect of chromosome doubling on ozone tolerance, we compared the physiological responses of a diploid honeysuckle (Lonicera japonica Thunb.) and its autotetraploid cultivar to elevated ozone (O3) exposure (70 ng g-1, 7 h d-1 for 31 d). Net photosynthetic rate (PN) of both cultivars were drastically (P<0.01) impaired by O3. Although there were significantly positive correlation between PN and stomatal conductance (gs) in both cultivars under each treatment, the decreased gs in O3 might be the result rather than the cause of decreased P N as indicated by stable or increasing the ratio of intercellular to ambient CO2 concentration(Ci/Ca). PN under saturating CO2 concentration
(PNsat) and carboxylation efficiency (CE) significantly decreased under O3 fumigation, which indicated the Calvin cycle was impaired. O3 also inhibited the maximum efficiency of photosystem II (PSII) photochemistry in the dark-adapted state (Fv/Fm), actual quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), the maximum in vivo rate of Rubisco carboxylation (Vcmax) and the maximal photosynthetic electron transport rate (Jmax) which demonstrated that the decrease in PN of the honeysuckle exposed to elevated O3 was probably not only due to impairment of Calvin cycle but also with respect to the light-harvesting and electron transport processes. Compared to the diploid, the tetraploid had higher relative loss in transpiration rate (E), (gs), (PNsat), Vcmax and Jmax. This result indicated that the Calvin cycle and electron transport in tetraploid was damaged more seriously than in diploid. A barely nonsignificant (P=0.086) interaction between O3 and cultivar on PN suggested a higher photosynthetic sensitivity of the tetraploid cultivar. and L. Zhang ... [et al.].
In an experimental site for reforestation of degraded area, three-year-old plants of Bertholletia excelsa Humb. & Bonpl. were subjected to different fertilization treatments: T0 = unfertilized control, T1 = green fertilization (branches and leaves) and T2 = chemical fertilization. Higher net photosynthetic rates (PN) were observed in T1 [13.2±1.0 μmol(CO2) m-2 s-1] compared to T2 [8.0±1.8 μmol(CO2) m-2 s-1] and T0 [4.8±1.3 μmol(CO2) m-2 s-1]. Stomatal conductance (g s), transpiration rate (E) and water use efficiency (WUE) of individuals of T1 and T2 did not differ significantly, however, they were by 88, 55 and 63%, respectively, higher in T1 than in the control. The mean values of variable fluorescence (Fv), performance index (P.I.) and total chlorophyll [Chl (a+b)] were higher in T1. Our results indicate that green fertilization improves photosynthetic structure and function in plants of B. excelsa in young phase. and M. J. Ferreira, J. F. C. Gonçalves, J. B. S. Ferraz.
Diurnal variation in net photosynthetic rate (PN) of three-year-old plants of Ginkgo biloba was studied under open, O (receiving full sunlight), net-shade, NS (40 % of photosynthetically active radiation, PAR), or greenhouse, G (25 % PAR) conditions. In all three conditions, PN was higher in morning along with stomatal conductance (gs), and intercellular CO2 concentration (Ci), while leaf temperature and vapour pressure deficit were low. The O-plants exhibited a typical decline in PN during midday, which was not observed in NS-plants. This indicated a possible photoinhibition in O-plants as the ratio of variable to maximum fluorescence (Fv/Fm) and photosystem 2 (PS2) yield (ΦPS2) values were higher in the NS- and G-plants. On the contrary, stomatal density and index, chlorophyll a/b ratio, leaf thickness, and density of mesophyll cells were greater in O-plants. Further, higher PN throughout the day along with higher relative growth rate under NS as compared to O and G suggested the better efficiency of Ginkgo plants under NS conditions. Therefore, this plant species could be grown at 40 % irradiance to meet the ever-increasing demand of leaf and also to increase its export potential. and S. Pandey, S. Kumar, P. K. Nagar.
European beech (Fagus sylvatica L.) seedlings of three different origins were used to evaluate the effect of water deficit and recovery during the most vulnerable phase of forest tree life. Gas-exchange characteristics and fluorescence rapid light curves were studied in the seedlings from a warm region (PV1, 530 m a.s.l.), seedlings from a moderately warm region (PV2, 625 m a.s.l.), optimal for beech, and in seedlings from a cool region (PV3; 1,250 m a.s.l.). Changes in photosynthetic characteristics caused by water deficit were similar, but their intensity was dependent on the origin of the seedlings. Simulation of drought conditions by the interruption of watering led to a decrease in the efficiency of primary photochemistry in PSII, with the most significant decrease in the PV2 seedlings. Conversely, water deficit affected most significantly gas exchange in PV3, where the recovery process was also the worst. The PV1 demonstrated the highest resistance to water deficit. Drought-adaptation of beech seedlings at non-native sites seems to be linked to water availability and to the origin of the beech seedlings., E. Pšidová, Ľ. Ditmarová, G. Jamnická, D. Kurjak, J. Majerová, T. Czajkowski, A. Bolte., and Obsahuje bibliografii
Selected light wavebands promote plant development and/or the biosynthesis of targeted metabolites. This work offers new insights on the effects of red (R), green (G), blue (B), and white (W - R:G:B; 1:1:1) LED light supplementation on physiochemical traits of strawberry leaves. Gas exchange and chlorophyll fluorescence parameters, photosynthetic pigments, and superoxide anion (*O2-) content were analysed in plants grown for 1 (T1) and 17 (T17) d with light supplementations. At T1, light supplementations resulted in the enhancement of the de-epoxidation state of xanthophylls and nonphotochemical quenching, but no changes were observed in maximal photosynthetic rate (PNmax), irrespective of light spectra. At T17, xanthophyll contents remained higher only in R-supplemented plants. Overall, W light resulted in higher photosynthesis, whilst R and B light depressed PNmax values and promoted *O2- formation at T17. G light did not induce variations in photosynthetic traits nor induced oxidative stress at both T1 and T17.
Cloned saplings of beech (7-y-old) were exposed to enhanced UV-B irradiation (+25 %) continuously over three growing seasons (1999-2001). Analysis of CO2 assimilation, variable chlorophyll (Chl) a fluorescence, and pigment composition was performed in late summer of the third growing season to evaluate the influence of long-term elevated UV-B irradiation. This influence was responsible for the stimulation of the net assimilation rate (PN) over a range of irradiances. The increase in PN was partially connected to increase of the area leaf mass, and thus to the increased leaf thickness. Even a higher degree of UV-B induced stimulation was observed at the level of photosystem 2 (PS2) photochemistry as judged from the irradiance response of electron transport rate and photochemical quenching of Chl a. The remarkably low irradiance-induced non-photochemical quenching of maximum Chl a fluorescence (NPQ) in the UV-B plants over the entire range of applied irradiances was attributed both to the reduced demand on non-radiative dissipation processes and to the considerably reduced contribution of the quenching localised in the inactivated PS2 reaction centres. Neither the content of Chls and total carotenoids expressed per leaf area nor the contents of lutein, neoxanthin, and the pool of xanthophyll cycle pigments (VAZ) were affected under the elevated UV-B. However, the contributions of antheraxanthin (A) and zeaxanthin (Z) to the entire VAZ pool in the dark-adapted UV-B treated plants were 1.61 and 2.14 times higher than in control leaves. Surprisingly, the retained A+Z in UV-B treated plants was not accompanied with long-term down-regulation of the PS2 photochemical efficiency, but it facilitated the non-radiative dissipation of excitation energy within light-harvesting complexes (LHC) of PS2. Thus, in the beech leaves the accumulation of A+Z, induced by other factors than excess irradiance itself, supports the resistance of PS2 against combined effects of high irradiance and elevated UV-B. and M. Šprtová ... [et al.].
We quantified the physiological responses of black willow to four soil moisture regimes: no flooding (control, C), continuous flooding (CF), periodic flooding (PF), and periodic drought (PD). Stomatal limitation was one of the factors that led to the reduced photosynthetic capacity in CF cuttings. Under PD, stomatal closure, decreased leaf chlorophyll content, and increased dark fluorescence yield contributed to photosynthetic decline. CF cuttings accumulated the lowest shoot biomass while the final height and root growth were most adversely affected by PD. PF cuttings tended to allocate more photoassimilates to root growth than to shoots. and S. Li ... [et al.].