Leaves and other chlorophyllous tissues of plants often show transient or permanent anthocyanin coloration. The question of whether anthocyanins can function as effective light screens to modulate photosynthesis in plants was addressed by comparing photosynthetic responses in reddish-purple pods with those in green pods of the ornamental leguminous tree Bauhinia variegata. For these comparisons the actinic radiation employed was either red radiation (RR) which was poorly absorbed by anthocyanin or blue-green radiation (BGR) which was strongly absorbed by anthocyanin. Photon yields of photosystem 2 (PS2) photochemistry and photochemical chlorophyll fluorescence quenching coefficients (qp), measured over a range of photon flux densities (PFD) up to 1200 µmol m-2 s-1 at 23 °C and at five temperatures from 8 to 28 °C at a PFD of 260 µmol m-2 s-1, were almost identical in green pods irradiated with either RR or BGR and in purple pods irradiated with RR. However, qp values remained much higher in purple pods irradiated with BGR, e.g., 0.80 in BGR versus 0.29 in RR at a PFD of 1200 µmol m-2 s-1 at 23 °C, and 0.67 in BGR versus 0.28 in RR at a PFD of 260 µmol m-2 s-1 at 8 °C. The higher values of qp in BGR compared to RR indicated that photoabatement by anthocyanin allowed the first stable acceptor of PS2, QA, to be kept in a more oxidized state, thus decreasing the likelihood of photoinhibition. This was confirmed by demonstrating a lower susceptibility to photoinhibition in purple pods than in green pods in the sunlight, either naturally in pods on trees or in detached pods exposed to photoinhibitory conditions. We conclude that photoabatement by anthocyanin is a mechanism for allowing maintenance of higher oxidative levels of PS2 acceptor during episodes of high radiation stress, thereby minimizing photodamage to photosynthetic tissues. and R. M. Smillie, S. E. Hetherington.
Light is a limiting factor in plant establishment and growth in the understory of forests. In this paper, we assessed acclimation capacity of Siparuna guianensis, an early secondary successional species. We used seedlings and saplings in three regeneration areas with different irradiance regimes to determine the traits that confer photoplasticity. We examined whether these traits differ at different developmental stages. Anatomical characteristics, photochemical efficiency, photosynthetic capacity, and growth were analyzed. Multivariate component analysis revealed the formation of six clusters: three for seedlings (one for each regeneration area) and three for saplings (following the same pattern of seedlings, considering the area). Increased irradiance favored photosynthetic performance, independently of the developmental stage. The same trend was observed for most data on chlorophyll (Chl) a fluorescence and the ratios of net photosynthetic rate/intercellular CO2 concentration (PN/Ci) and PN/PPFD. No parameter indicated photoinhibition stress. The CO2- and light-response curve data indicated that seedlings were already acclimated to tolerate variation in irradiance. Anatomical adaptations, such as thickness of leaf blade and of adaxial cuticle, were observed in individuals growing in areas with higher irradiation. Thinning of spongy parenchyma and higher investment into a plant height were observed in seedlings, possibly due to the vertical stratification of CO2 and light in the understory; because light is a more limiting resource than CO2 in the lower stratum of the forest. Photoplasticity in S. guianensis is associated with a set of morphological, anatomical, photochemical, and biochemical traits, whereas biochemical performance is best acclimated to variation in irradiance. These traits differed in seedlings and saplings but they were modulated mainly by irradiance in both developmental stages., T. O. Vieira, M. S. O. Degli-Esposti, G. M. Souza, G. R. Rabelo, M. Da Cunha, A. P. Vitória., and Obsahuje bibliografii
The dark-adapted cells of the green alga Spongiochloris sp. were exposed to "white light" of 1000 µmol(photon) m-2 s-1 for 2 h and then dark adapted for 1.5 h. Changes of photochemical activities during photoadaptation were followed by measurement of chlorophyll (Chl) fluorescence kinetics, 77 K emission spectra, photosynthetic oxygen evolution, and pigment composition. We observed a build-up of slowly-relaxing non-photochemical quenching which led to a decrease of the Fv/Fm parameter and the connectivity. In contrast to the depression of Fv/Fm (35 %) and the rise of non-photochemical quenching (∼ 1.6), we observed an increase in effective absorption cross-section (20 %), Hill reaction (30 %), photosynthetic oxygen evolution (80 %), and electron transport rate estimated from the Chl fluorescence analysis (80 %). We showed an inconsistency in the presently used interpretation schemes, and ascribe the discrepancy between the increase of effective absorption cross-section and the photosynthetic activities on one side and the effective non-photochemical quenching on the other side to the build-up of a quenching mechanism which dissipates energy in closed reaction centres. Such a type of quenching changes the ratio between thermal dissipation and fluorescence without any effect on photochemical yield. In this case the Fv/Fm ratio cannot be used as a measure of the maximum photochemical yield of PS2. and M. Koblížek ... [et al.].
In order to assess its response to the herbicide, sethoxydim (SEY), seedlings of two foxtail millet (Setaria italica) hybrids were exposed to 0.75, 1.5, 3, and 6 L(SEY active ingredient, ai) ha-1 for 7 and 15 d. Our results showed that SEY reduced photosynthesis and oxidative stress in the hybrid millet (Zhangza) at the dosage below 1.5 L(ai) ha-1 (i.e., recommended dosage), whereas it caused death of Jingu 21 at all treatment dosages. In addition, we further explored the effect of SEY on PSI and PSII; the hybrid millet showed a greater tolerance to SEY and also the ability to recover. In conclusion, the hybrid millet seems to possess certain photosynthetic protection mechanisms which could reduce or eliminate the herbicide stress by increasing nonphotochemical quenching for dissipating excessive light energy under SEY-induced oxidative stress., M. J. Guo, Y. G. Wang, S. Q. Dong, Y. Y. Wen, X. E. Song, P. Y. Guo., and Obsahuje bibliografii
Photosystem 2 (PS2)-driven electron transfer was studied in primary leaves of barley (Hordeum vulgare L.) seedlings grown under various photon fluxes (0.3-170.0 μmol m-2 s-1) of blue (BR) or red (RR) radiation using modulated chlorophyll fluorescence. The Fv/Fm ratio was 0.78-0.79 in leaves of all radiation variants, except in seedlings grown under BR or RR of 0.3 μmol m-2 s-1. The extent of the photochemical phase of the polyphasic Fv rise induced by very strong "white light" was similar in leaves of all radiation treatments. Neither radiation quality nor photon flux under plant cultivation influenced the amount of non QB-transferring centres of PS2 except in leaves of seedlings grown under BR of 0.3 μmol m-2 s-1, in which the amount of such centres increased threefold. Both BR and RR stimulated the development of photochemically competent PS2 at photon fluxes as low as 3 μmol m-2 s-1. Three exponential components with highly different half times were distinguished in the kinetics of Fv dark decay. This indicates different pathways of electron transfer from QA-, the reduced primary acceptor of PS2, to other acceptors. Relative magnitudes of the individual decay components did not depend on the radiation quality or the photon flux during plant cultivation. Significant differences were found, however, between plants grown under BR or RR in the rate of the middle and fast components of Fv dark decay, which showed 1.5-times faster intersystem linear electron transport in BR-grown leaves. and E. A. Egorova, N. G. Bukhov.
In the course of dehydration, the gas exchange and chlorophyll (Chl) fluorescence were measured under irradiance of 800 μmol m-2 s-1 in detached apple leaves, and the production of active oxygen species (AOS), hydrogen peroxide (H2O2), superoxide (O2-), hydroxyl radical (-OH), and singlet oxygen (1O2), were determined. Leaf net photosynthetic rate (PN) was limited by stomatal and non-stomatal factors at slight (2-3 h dehydration) and moderate (4-5 h dehydration) water deficiency, respectively. Photoinhibition occurred after 3-h dehydration, which was defined by the decrease of photosystem 2 (PS2) non-cyclic electron transport (P-rate). After 2-h dehydration, an obvious rise in H2O2 production was found as a result of photorespiration rise. If photorespiration was inhibited by sodium bisulfite (NaHSO3), the rate of post-irradiation transient increase in Chl fluorescence (Rfp) was enhanced in parallel with a slight decline in P-rate and with an increase in Mehler reaction. At 3-h dehydration, leaf P-rate decrease could be blocked by glycine (Gly) or methyl viologen (MV) pre-treatment, and MV was more effective than Gly at moderate drought time. AOS (H2O2 and O2-), prior to photoinhibition produced from photorespiration and Mehler reaction in detached apple leaves at slight water deficiency, were important in dissipating photon energy which was excess to the demand of CO2 assimilation. So photoinhibition could be effectively prevented by the way of AOS production. and H. S. Jia, Y. Q. Han, D. Q. Li.
Photoinhibition of photosynthesis was investigated in grapevine (Vitis vinifera L.) exposed to 2 or 4h of high irradiance (HI) (1 700-1 800 μmol m-2 s-1) leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of photosystem 2 (PS2), Fv/Fm, markedly declined, F0 increased in both 2 (HI2) and 4 h (HI4) HI leaves sampled at midday. When various photosynthetic activities were followed on isolated thylakoids, HI4 leaves showed significantly higher inhibition of whole chain and PS2 activity than the HI2 leaves sampled at midday. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both variants of leaves, while DPC and NH2OH significantly restored PS2 activity in HI4 midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between HI2 and HI4 leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in HI2, while in HI4 it was mainly 33-kDa protein. and M. Bertamini, N. Nedunchezhian.
The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 µmol m-2 s-1) on net photosynthetic rate (PN), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased PN, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons. and Y.-P. Guo ... [et al.].
The low chlorophyll b mutant of high yield rice had a lower light-harvesting complex 2 content than the wild type. The stability of oxygen evolution side of photosystem 2 was only slightly lower. A lower photon absorption rate and a stronger xanthophyll cycle capacity of this mutant led to a higher endurance to strong irradiance and a lower photoinhibition as compared with the wild type rice. and Xinbin Dai ... [et al.].
Photoinhibition of photosynthesis was investigated in control (C) and chilling night (CN) leaves of grapevine under natural photoperiod at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the potential efficiency of photosystem (PS) 2, Fv/Fm was measured at midday, it markedly declined with significant increase of F0 in CN leaves. In isolated thylakoids, the rate of whole chain and PS2 activity were markedly decreased in CN leaves than control leaves at midday. A smaller inhibition of PS1 activity was also observed in both leaf types. Later, the leaves reached maximum PS2 efficiencies similar to those observed in the morning during sampling at evening. The artificial exogenous electron donors diphenyl carbazide, NH2OH, and Mn2+ failed to restore the PS2 activity in both leaf types at midday. Thus CN enhanced inactivation on the acceptor side of PS2 in grapevine leaves. Quantification of the PS2 reaction centre protein D1 following midday exposure of leaves showed pronounced differences between C and CN leaves. The marked loss of PS2 activity in CN leaves noticed in midday samples was mainly due to the marked loss of D1 protein of the PS2 reaction centre. and M. Bertamini ... [et al.].