The decay of chlorophyll (Chl) fluorescence of etiochloroplasts isolated in various stage of greening of cucumber cotyledons was analysed in order to get structural information on a photosynthetic apparatus. Two model decays, multiexponential and stretched exponential, were applied in the analysis. The quality of fit in these two models was different in various stages of chloroplast greening. The two-exponent model did not provide a good fit at early greening stages. To improve the fit it was necessary to introduce an additional third component which became very low at later stages. However, chloroplasts in the early stage of greening could also be described by a stretched exponential with parameters indicating rather planar (two-dimensional) arrangement of donor and acceptor molecules. The chloroplasts treated by DCMU and/or photooxidized by strong irradiance exhibit a similar character of fractal decay as untreated samples but in the multiexponential model the exact values of lifetimes and amplitudes of components vary. This suggests that the structure of investigated system does not dramatically change as a result of these two types of treatment. and A. Kowalczyk, A. Waloszek, D. Frąckowiak.
The size, shape, and number of chloroplasts in the palisade and spongy parenchyma layers of Haberlea rhodopensis leaves changed significantly during desiccation and following rehydration. The chloroplasts became smaller and more rounded during desiccation, and aggregated in the middle of the cell. The size and number of chloroplasts in the palisade parenchyma cells were higher than in spongy parenchyma. The good correlation observed between the size or number of chloroplasts and the cross-sectional area of mesophyll cells, the cross-sectional width of the leaf and its water content suggested that the palisade cells were more responsive to water availability than the spongy cells. Changes in chloroplast number during desiccation and rehydration process are characteristic features for desiccation-tolerant plants (especially in homoiochlorophyllous strategy). and H. Nagy-Déri ... [et al.].
a1_Photosynthesis is one of the most important processes in plant biology and in the development of new methodologies that allow a better understanding and characterization of the photosynthetic status of organisms, which is invaluable. Flow cytometry (FCM) is an excellent tool for measuring fluorescence and physical proprieties of particles but it has seldom been used in photosynthetic studies and thus the full extent of its potentialities, in this field of research, remains unknown. To determine the suitability of FCM in photosynthesis studies, pea plants were exposed to Paraquat and their status was analyzed during 24 h. FCM was used to evaluate the integrity (volume and internal complexity) and the relative fluorescence intensity (FL) of chloroplasts extracted from those plants. To elucidate which type of information the FL conveys, FL values were correlated with the minimum fluorescence level (F0), maximum fluorescence level (Fm) and maximum photochemical efficiency of PSII (Fv/Fm), obtained by using Pulse-Amplitude-Modulation (PAM) fluorometry. Results indicate that: (1) the biomarkers used to evaluate the structural integrity of the chloroplasts were more sensitive to Paraquat exposure than the ones related to fluorescence; (2) the variation of the chloroplast’s structure, as time progressed, pointed to a swelling and subsequent burst of the chloroplast which, in turn, compromised fluorescence emission; (3) FL presented a high and significant correlation with the Fv/Fm and to a lesser degree with Fm but not with F0; (4) pigment content did not reveal significant changes in response to Paraquat exposure and is in agreement with the proposed model, suggesting that the cause for fluorescence decrease is due to chloroplast disruption., a2_In sum, FCM proved to be an outstanding technique to evaluate chloroplastidal functional and structural status and therefore it should be regarded as a valuable asset in the field of photosynthetic research., E. Rodriguez ... [et al.]., and Obsahuje bibliografii
The ultrastructure of cotton leaves, exhibiting reddening as symptom of physiological disorder, was examined by means of transmission electron microscopy. Osmiophilisation of the membrane compartment was established. Massive agglomerations on the tonoplast in the vacuole of cells under the adaxial epidermis were observed, and were referred to as electron-dense osmiophilic substance, most probably of anthocyanin nature. In chloroplast stroma a zone of low electron density enclosing numerous osmiophilic aggregations of unclear chemical character was differentiated. Fragmentation and severe destruction of thylakoids in chloroplasts of reddening cotton leaves was not detected. and D. Stoyanova-Koleva ... [et al.].
Kappaphycus alvarezii is a seaweed of great economic importance for the extraction of kappa carrageenan from its cell walls. The most common strains are dark red, brown, yellow, and different gradations of green. It is known that ultraviolet radiation (UVR) affects macroalgae in many important ways, including reduced growth rate, reduction of primary productivity, and changes in cell biology and ultrastructure. Therefore, we examined the brown strain of K. alvarezii exposed to ultraviolet-B radiaton (UVBR) for 3 h per day during 28 days of cultivation. The control plants showed growth rates of 7.27% d-1, while plants exposed to UVBR grew only 4.0% d-1. Significant differences in growth rates and in phycobiliproteins between control and exposed plants were also found. Compared with control plants, phycobiliprotein contents were observed to decrease after UV-B exposure. Furthermore, the chlorophyll a (Chl a) contents decreased and showed significant differences. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included increased thickness of the cell wall and number of plastoglobuli, reduced intracellular spaces, changes in the cell contour, and destruction of chloroplast internal organization. Reaction with Toluidine Blue showed an increase in the thickness of the cell wall, and Periodic Acid-Schiff stain showed a decrease in the number of starch grains. By the significant changes in growth rates, photosynthetic contents and ultrastructual changes observed, it is clear that UVBR negatively affects intertidal macroalgae and, by extension, their economic viability. and É. C. Schmidt ... [et al.].
Nitric oxide (NO) is an important signalling molecule with diverse physiological functions in plants. In plant cell, it is synthesised in several metabolic ways either enzymatically or nonenzymatically. Due to its high reactivity, it could be also cytotoxic in dependence on concentration. Such effects could be also mediated by NO-derived compounds. However, the role of NO in photosynthetic apparatus arrangement and in photosynthetic performance is poorly understood as indicated by a number of studies in this field with often conflicting results. This review brings a short survey of the role of exogenous NO in photosynthesis under physiological and stressful conditions, particularly of its effect on parameters of chlorophyll fluorescence. and D. Procházková ... [et al.].
Effects of high-temperature stress (HTS) and PEG-induced water stress (WS), applied separately or in combination, on the functional activity and ultrastructure of the photosynthetic apparatus (PSA) of maize (Zea mays L.) and sunflower (Helianthus annuus L.) plants were investigated. In maize plant tissues WS provoked the decrease in RWC by 10.9 %, HTS by 7.0 %, and after simultaneous application of the both treatments the decrease was 32.7 % in comparison with control plants. Similar but more expressed changes were observed in sunflower plants. Sunflower was more sensitive to these stresses. Net photosynthetic rate decreased significantly after all treatments, more in sunflower. In mesophyll chloroplasts after separately applied WS and HTS the number of grana and thylakoids was reduced and electron-transparent spaces appeared. At combined stress (WS+HTS) granal and stromal thylakoids were considerably affected and chloroplast envelope in many of them was partially disrupted. and I. Dekov, T. Tsonev, I. Yordanov.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) is one of the key enzymes involved in assimilation of CO2 in chloroplasts. Phylloplane microfungi and their metabolites have been reported to affect the physiology of host plants, particularly, their photosynthesis. However, information is lacking on the effect of these microflora on the physiology of chloroplasts. The current study emphasized the impact of two dominant phylloplane fungi, Aspergillus niger and Fusarium oxysporum, on activity of Rubisco in tomato chloroplasts. Ergosterol, which is a component of only fungal cell membranes and is not synthesized by plants, have been demonstrated to elicit activity of Rubisco. In the present study, it was demonstrated through in silico, in vitro, and in vivo approaches. Results demonstrated that the fungal metabolites, which contained ergosterol, could double Rubisco activity. Maximum carboxylation rate of Rubisco increased also in ergosterol-treated plants. Michaelis-Menten constant of Rubisco was also slightly affected. Ergosterol was found also to influence and enhance the binding of CO2 and ribulose-1,5-bisphosphate to Rubisco. Therefore we can postulate that the physiology of the chloroplast is probably influenced by phylloplane microfungi., J. Mitra, P. Narad, P. K. Paul., and Obsahuje bibliografii
We investigated the differential expression of AOX1 multi-gene family and the regulation of alternative respiratory pathway during initial greening development in leaves of rice (Oryza sativa L.) seedlings. After exposing the dark-grown rice seedlings to continuous irradiation, total respiration (Vt), capacity of alternative pathway (Valt), and their ratio (Valt/Vt) increased with the greening of leaves. In this process, AOX1c transcript increased under constant irradiation, while AOX1a and AOX1b transcripts were hardly detected. Thus AOX1c in rice presents a similar expression pattern as AOX2 does in many dicotyledonous species during greening development. Compared with the rapid increase of cyanideresistant respiration in the presence of photon energy, CO2 fixation was not observed until 8 h after the onset of irradiation. The AOX inhibitor salicylhydroxamic acid (SHAM; 1 mM) inhibited 67.3 % of cyanide-insensitive oxygen uptake in dark-grown leaves and 69.4 % of it in leaves grown under irradiation. Dark-grown plants pre-treated with SHAM were then irradiated for 12 h. SHAM did not obviously modify photosynthetic CO2 fixation rate on a chlorophyll (Chl) content basis in both leaves and simultaneously isolated chloroplasts. Hence during initial greening steps of the plants, the induction of alternative pathway and AOX1 expression by irradiation is not directly linked with carbon assimilation of photosynthesis. The application of SHAM partially limited Chl production in rapidly greening leaves, indicating that Chl synthesis in the process of greening might be medicated to some extent by alternative respiratory pathway. and H. Q. Feng ... [et al.].