Prosopis juliflora is an invasive leguminous tree species growing profusely under wide environmental conditions. Primary objective of this study was to investigate adaptation strategies evolved to deal with wide environmental conditions during different seasons. P. juliflora adapts through a production of leaves in two seasons, namely, the spring (the first cohort) and monsoon (the second cohort) with differing but optimal physiological characteristics for growth in respective seasons. Our studies show that the first cohort of leaves exhibit maximum carbon fixation under moderate temperatures and a wide range of PPFD. However, these leaves are sensitive to high leaf-to-air-vapor pressure deficit (VPD) occurring at high temperatures in summer resulting in senescence. While the second cohort of leaves produced during monsoon showed maximum carbon fixation at high irradiance and temperatures with low VPD, it is sensitive to low temperatures causing senescence in winter., P. A. Shirke, U. V. Pathre, P. V. Sane., and Obsahuje bibliografické odkazy
The photosynthetic response of 8 cotton (Gossypium hirsutum L.) genotypes to changing irradiance was investigated under field conditions during the 1998 through 2000 growing seasons. Equations developed to describe the response of net photosynthetic rate (PN) to photosynthetic photon flux density (PPFD) demonstrated that, across all irradiances, the two okra leaf-type genotypes photosynthesized at a greater rate per unit leaf area than all of the six normal leaf-type genotypes. This superior photosynthetic performance of the okra leaf-type genotypes can be partially explained by their 13 % greater leaf chlorophyll content relative to that of the normal leaf-type genotypes. The 37 % reduction in leaf size brought upon by the okra leaf trait may have concentrated the amount of photosynthetic machinery per unit leaf area. Nevertheless, the lack of sufficient canopy leaf surface area suppressed the potential yield development that could accompany the higher PN per unit leaf area.
Diurnal and seasonal changes in photosynthetic characteristics, leaf area dry mass (ADM), and reducing sugar and total chlorophyll (Chl) contents of leaves of Frantoio, Leccino, and Maurino olive cultivars were investigated in Central Italy. Leaf net photosynthetic rate (PN) per unit leaf area changed during the growing season and during the day, but the cultivar did not significantly influence the changes. In both young and one-year-old leaves the highest PN values were observed in October, while the lowest values were recorded in August and December; during the day the highest PN values were generally found in the morning. The pattern of photosynthetic response to photosynthetic photon flux density (PPFD) of leaves was similar in the three genotypes. Sub-stomatal CO2 concentration (CI) tended to increase when PN decreased. The increase in CI was accompanied by a stomatal conductance to water vapor (gS) decrease. In general, PN and dark respiration rate (RD) were correlated. Transpiration rate (E), with no differences between the cultivars, increased from April to July, decreased greatly in August, then increased in October and finally decreased again in December. Leaf water content increased from April to June, remained high until mid July, decreased significantly in August, remaining constant until December with no differences associated with the cultivar. In both young and one-year-old leaves, the leaf water content per unit leaf area was slightly greater in Frantoio than in the other two cultivars. The one-year-old leaves had a higher Chl content than the young ones. The cultivar did not substantially influence the leaf reducing sugar content which decreased from April to August, when it reached the lowest level, then increased rapidly until October. During the day the reducing sugar content did not change significantly. The leaf ADM was slightly higher in Frantoio than in the other cultivars and one-year-old leaves had higher values than the young ones. Leaf ADM decreased from April to June and then tended to increase until December. During the day there were no substantial variations. and P. Proietti, F. Famiani.
Net photosynthetic rate (PN) and dark respiration rate (RD) were measured in Vitis vinifera L. cvs. Dimiat 4/24 (23rd subculture), Dimiat 4/38 (22nd subculture), and Italian Riesling 3/47 (22nd subculture) on days 3, 2, and 1 (1st series) before transfer from the in vitro culture and on days 14, 15, 16 (2nd series) and 28, 29, 30 (3rd series) after the transfer. PN of in vitro and ex vitro plants was strongly affected by irradiance. PN and RD of in vitro plantlets were lower and transpiration rate (E) was higher compared to those of ex vitro plantlets. PN, RD, and E changed in the course of acclimation. and T. Slavtcheva, V. Dimitrova.
Hypobaria (low total atmospheric pressure) is essential in sustainable, energy-efficient plant production systems for long-term space exploration and human habitation on the Moon and Mars. There are also critical engineering, safety, and materials handling advantages of growing plants under hypobaria, including reduced atmospheric leakage from extraterrestrial base environments. The potential for producing crops under hypobaria and manipulating hypoxia (low oxygen stress) to increase health-promoting bioactive compounds is not well characterized. Here we showed that hypobaric-grown lettuce plants (25 kPa ≈ 25% of normal pressure) exposed to hypoxia (6 kPa pO2 ≈ 29% of normal pO2) during the final 3 d of the production cycle had enhanced antioxidant activity, increased synthesis of anthocyananins, phenolics, and carotenoids without reduction of photosynthesis or plant biomass. Net photosynthetic rate (PN) was not affected by total pressure. However, 10 d of hypoxia reduced PN, dark respiration rate (RD),
PN/RD ratio, and plant biomass. Growing plants under hypobaria and manipulating hypoxia during crop production to enhance health-promoting bioactive compounds is important for the health and well-being of astronauts exposed to space radiation and other stresses during long-term habitation. and C. He ... [et al.].
The study was carried out in a four-year-old super-high density olive grove in Central Italy to compare leaf gas exchanges of Spanish Arbequina and Italian Maurino olive cultivars. Overall, from mid July to mid November, Maurino had a slightly higher maximum
light-saturated net photosynthetic rate (PNmax) than Arbequina. The lowest and the highest PNmax values were recorded at the end of July and in mid November, respectively. Current-season leaves showed similar or slightly higher PNmax values than one-year-old leaves. During the day Maurino always had slightly higher values or values similar to Arbequina, with the highest PNmax being in the morning. Maurino had similar or higher dark respiration rate (RD) values compared to Arbequina. During the day, in both cultivars the RD was lower at 9:00 than in the afternoon. The pattern of the photosynthetic irradiance-response curve was similar in the two genotypes, but the apparent quantum yield (YQ) was higher in Maurino. In both cultivars intercellular CO2 concentration (Ci) tended to increase when PNmax decreased. The increase in Ci corresponded to a decrease in stomatal conductance (gs). The transpiration rate (E) increased from mid July to the beginning of August, then decreased in September and increased again in November. Particularly in the morning, the current-season leaves showed similar or slightly higher E values than the one-year-old leaves. During the day, in both cultivars and at both leaf ages, E was higher in the afternoon. No effects on leaf gas exchanges due to the presence or absence of fruit on the shoot were found. Overall, there was satisfactory physiological adaptation for Arbequina to the conditions of Central Italy and for Maurino to the superintensive grove conditions., P. Proietti, L. Nasini, and L. Ilarioni., and Obsahuje bibliografii
During ontogeny of Gossypium hirsutum L. floral buds (squares), increases in area and dry mass (DM) of floral bracts and the subtending sympodial leaf followed a sigmoid growth curve with increasing square age. The maximum growth rates of the bract area and bract DM occurred between 15 and 20 d after square first appearance (3 mm in diameter). Net photosynthetic rate (PN) of the sympodial leaf at first fruiting branch position of main-stem node 10 reached a maximum when the subtended square developed into a white flower. Floral bracts had much lower PN and higher dark respiration than the subtending leaf. The amount of 14CO2 fixation by the bracts of a 20-d-old square was only 22 % of the subtending leaf, but 56 % of 14C-assimilate in the floral bud was accumulated from the bracts, 27 % from the subtending leaf, and only 17 % from the main-stem leaf at 6 h after 14C feeding these source s. Hence floral bracts play an important role in the carbon supply of developing cotton squares. and Duli Zhao, D. M. Oosterhuis.
Cuttings of P. przewalski were exposed to two different watering regimes which were watered to 100 and 25 % of field capacity (WW and WS, respectively). Drought stress not only significantly decreased net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), efficiency of photosystem 2 (PS2) (Fv/Fm and yield), and increased intrinsic water use efficiency (WUEi) under controlled optimal conditions, but also altered the diurnal changes of gas exchange, chlorophyll fluorescence, and WUEi. On the other hand, WS also affected the
PN-photosynthetically active radiation (PAR) response curve. Under drought stress, PN peak appeared earlier (at about 10:30 of local time) than under WW condition (at about 12:30). At midday, there was a depression in PN for WS plants, but not for WW plants, and it could be caused by the whole microclimate, especially high temperature, low relative humidity, and high PAR. There were stomatal and non-stomatal limitations to photosynthesis. Stomatal limitation dominated in the morning, and low PN at midday was caused by both stomatal and non-stomatal limitations, whereas non-stomatal limitation dominated in the afternoon. In addition, drought stress also increased compensation irradiance and dark respiration rate, and decreased saturation irradiance and maximum net photosynthetic rate. Thus drought stress decreased plant assimilation and increased dissimilation through affected gas exchange, the diurnal pattern of gas exchange, and photosynthesis-PAR response curve, thereby reducing plant growth and productivity. and C. Y. Yin, F. Berninger, C. Y. Li.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 µmol m-2 s-1, the shade leaves tended to have a significantly larger net photosynthetic rate (PN) than the sun leaves. At irradiances above 250 µmol m-2 s-1, the PN did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves. and M. Tateno, H. Taneda.
We found differences between true leaves (TL) and phyllodes (Ph) during ontogeny of Acacia mangium plants as reflected in chlorophyll (Chl) and carotenoid contents, gas exchange, Chl fluorescence, and growth. The production of TL enhanced the relative growth rate of the A. mangium seedlings, allowing the plants to accumulate enough dry biomass for later growth, while the production of thicker Ph in the later growth stage of A. mangium could help plants to cope with higher irradiance in their natural growth conditions. and H. Yu, J.-T. Li.