Some photosynthetic attributes of leaves and stems were seasonally followed in the small-leaved, summer-deciduous, green-stemmed Mediterranean shrub Calicotome villosa. Both leaves and stems displayed similar photon energy-saturated photosystem 2 (PS2) efficiencies with a minimum during winter. A second minimum in stems during the leafless summer period could be ascribed to sustained photoinhibition. Yet, stems were slightly inferior in photon capture, resulting partly from lower chlorophyll (Chl) contents and partly from higher reflectance due to pubescence. As a result, photon energy-saturated linear electron transport rates were slightly higher in leaves. However, when the total leaf and stem areas were taken into account, this superiority was abolished during autumn and winter and more than overturned during spring. Given that during summer the stems were the only photosynthetic organs, the yearly photosynthetic contribution of stems was much higher. Chl contents in stems displayed a transient and considerable summer drop, accompanied by an increase in the carotenoid to Chl ratio, indicating a photo-protective adaptation to summer drought through a decrease of photo-selective capacity, typical for leaves of many Mediterranean plants. and C. Yiotis, G. K. Psaras, Y. Manetas.
Sensing and classification of drought stress levels are very important to agricultural production. In this work, rice drought stress levels were classified based on the commonly used chlorophyll a fluorescence (ChlF) parameter (Fv/Fm), feature data (induction features), and the whole OJIP induction (induction curve) by using a Support Vector Machine (SVM). The classification accuracies were compared with those obtained by the K-Nearest Neighbors (KNN) and the Ensemble model (Ensemble) correspondingly. The results show that the SVM can be used to classify drought stress levels of rice more accurately compared to the KNN and the Ensemble and the classification accuracy (86.7%) for the induction curve as input is higher than the accuracy (43.9%) with Fv/Fm as input and the accuracy (72.7%) with induction features as input. The results imply that the induction curve carries important information on plant physiology. This work provides a method of determining rice drought stress levels based on ChlF.
Haloxylon ammodendron, Calligonum mongolicum, Elaeagnus angustifolia, and Populus hosiensis had different adaptations to limited water availability, high temperature, and high irradiance. C. mongolicum used water more efficiently than did the other species. Because of low transpiration rate (E) and low water potential, H. ammodendron had low water loss suitable for desert conditions. Water use efficiency (WUE) was high in E. angustifolia, but high E and larger leaf area made this species more suitable for mesic habitats; consequently, this species is important in tree shelterbelts. P. hosiensis had low WUE, E, and photosynthesis rates, and therefore, does not prosper in arid areas without irrigation. High irradiances caused photoinhibition of the four plants. The decrease of photochemical efficiency was a possible non-stomata factor for the midday depression of C. mongolicum. However, the species exhibited different protective mechanisms against high irradiance under drought stress. H. ammodendron and C. mongolicum possessed a more effective antioxidant defence system than E. angustifolia. These three species showed different means of coping with oxidative stress. Hence an enzymatic balance is maintained in these plants under adverse stress conditions, and the concerted action of both enzymatic and non-enzymatic reactive oxygen species scavenging mechanisms is vital to survive adverse conditions. and J. R. Gong ... [et al.].
Environmental conditions that promote photorespiration are considered to be a major driving force for the evolution of C4 species from C3 ancestors. The genus Flaveria contains C3 and C4 species as well as a variety of intermediate species. In this study, we compare the water-use efficiency of intermediate Flaveria species to that of C3 and C4 species. The results indicate that under both well-watered and a drought-stress condition, C3-C4 and C4-like intermediacy in Flaveria species improve water-use efficiency as compared to C3 species. and M. C. Dias, W. Brüggemann.