Brassinosteroids (BRs) and polyamines, well-established growth regulators, play a key role in abiotic stress response in plants. In the present study, we examined the role of 24-epibrassinolide (EBL, an active BR) and/or putrescine (Put) in the salt-induced stress in cucumber. The 15-d-old plants were exposed to 100 mM NaCl and they were subsequently treated by exogenous EBL and/or Put. The salt stress reduced significantly plant growth and gas-exchange parameters, and increased proline content and electrolyte leakage in the leaves. Toxic effects induced by salt stress were completely overcome by the combination of EBL and Put. EBL and/or Put treatments improved the growth parameters of the NaCl-treated plants, such as shoot length, root length, fresh and dry mass. Our data also indicated that applications of EBL and Put upregulated the activities of the antioxidant enzymes, such as catalase, peroxidase, and superoxide dismutase under salt stress., Q. Fariduddin, B. A. Mir, M. Yusuf, A. Ahmad., and Obsahuje bibliografii
Seedlings of the hypoxia-sensitive cucumber cultivar were hydroponically grown under hypoxia for 7 d in the presence or absence of 24-epibrassinolide (EBR, 2.1 nM). Hypoxia significantly inhibited growth, while EBR partially counteracted this inhibition. Leaf net photosynthetic rate (PN), stomatal conductance, transpiration rate, and water-use efficiency declined greatly, while the stomatal limitation value increased significantly. The maximum net photosynthetic rate was strongly reduced by hypoxia, indicating that stomatal limitation was not the only cause of the PN decrease. EBR markedly diminished the harmful effects of hypoxia on PN as well as on stomata openness. It also greatly stimulated CO2 fixation by the way of increasing the carboxylation capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose-1,5-bisphosphate regeneration, Rubisco activity, and the protection of Rubisco large subunit from degradation. Our data indicated that photosystem (PS) II was damaged by hypoxia, while EBR had the protective effect. EBR further increased nonphotochemical quenching that could reduce photodamage of the PSII reaction center. The proportion of absorbed light energy allocated for photochemical reaction (P) was reduced, while both nonphotochemical reaction dissipation of light energy and imbalanced partitioning of excitation energy between PSI and PSII increased. EBR increased P and alleviated this imbalance. The results suggest that both stomatal and nonstomatal factors limited the photosynthesis of cucumber seedlings under hypoxia. EBR alleviated the growth inhibition by improving CO2 asimilation and protecting leaves against PSII damage., Y. H. Ma, S. R. Guo., and Obsahuje bibliografii
Leaf chlorophyll (Chl) concentration can be an indicator of plant health, including photosynthetic potential and nutrient status. In some cases, this measure can indicate the degree to which plants are water-stressed. Traditional methods of measuring Chl concentration have involved a destructive sampling technique: extraction and spectrophotometric analysis. A compatible nondestructive method to measure leaf Chl concentration exists and applies transmittance spectroscopy to plants with a Minolta SPAD-502 meter. These techniques were evaluated by comparing leaf Chl concentration in big bluestem (Andropogon gerardii). Leaves were sampled from plants representing three ecotypes (originating from Central Kansas, Eastern Kansas, and Illinois, USA) and two cultivars of A. gerardii growing in Hays, Kansas, USA. Leaf Chl concentration was measured using nondestructive and destructive techniques. We documented a saturating relationship between destructively measured leaf Chl concentration and SPAD index resulting from a decelerating change in SPAD index as Chl concentration increased. The comparison of A. gerardii ecotypes and cultivars demonstrated highest Chl concentration in the ecotype and cultivar from areas with historically low precipitation, Central Kansas and A. gerardii var. hallii, respectively. A high ratio of Chl a to Chl b is an index of drought adaptation and was also manifested in A. gerardii from drier regions. Thus, drought-adapted ecotypes and cultivars might be able to maintain high photosynthetic productivity and protect photosystem II during dry periods. Conversely, the ecotypes and cultivar originating from areas with higher precipitation had lower leaf Chl and a lower Chl a/b ratio., K. L. Caudle, L. C. Johnson, S. G. Baer, B. R. Maricle., and Obsahuje bibliografii
Iron is an essential limiting factor for primary production in many marine systems. The present study investigated differential regulation of protein expression in marine phytoplankton Prymnesium parvum under low Fe concentration. The phytoplankton was grown in f/2 culture medium in artificial seawater with low (0.0025 μM) and high (0.05 μM) Fe concentrations. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption-ionization-time of flight-mass spectrometer analysis were performed for protein identification and characterization. The growth of the alga declined substantially under the low Fe compared to the high Fe concentration. Under low Fe conditions, P. parvum upregulated 10 proteins including chloroplastic ATP synthase subunit b, D2 protein of PSII, D1 protein of PSII reaction centre, and light harvesting complex II protein, most of which are associated with photosynthetic activities in PSII. The results suggest that the marine alga P. parvum altered the biosynthesis of several photosynthetic proteins in order to cope with low Fe conditions., M. M. Rahman, M. A. Rahman, T. Maki, T. Nishiuchi, T. Asano, H. Hasegawa., and Obsahuje bibliografii
Chlorophyll index and leaf nitrogen status (SPAD value) was incorporated into the nonrectangular hyperbola (NRH) equation for photosynthetic light-response (PLR) curve to establish a modified NRH equation to overcome the parameter variation. Ten PLR curves measured on rice leaves with different SPAD values were collected from pot experiments with different nitrogen (N) dosages. The coefficients of initial slope of the PLR curve and the maximum net photosynthetic rate in NRH equation increased linearly with the increase of leaf SPAD. The modified NRH equation was established by multiplying a linear SPAD-based adjustment factor with the NRH equation. It was sufficient in describing the PLR curves with unified coefficients for rice leaf with different SPAD values. SPAD value, as the indicator of leaf N status, could be used for modification of NRH equation to overcome the shortcoming of large coefficient variations between individual leaves with different N status. The performance of the SPAD-modified NRH equation should be further validated by data collected from different kinds of plants growing under different environments., J. Z. Xu, Y. M. Yu, S. Z. Peng, S. H. Yang, L. X. Liao., and Obsahuje bibliografii
PAM (pulse amplitude modulation) fluorometers can be used to estimate the electron transport rate (ETR) [μmol(e-) m-2 s-1] from photosynthetic yield determinations, provided the absorptance (Abtλ) of the photoorganism is known. The standard assumed value used for absorptance is 0.84 (leaf absorptance factor, AbtF). We described a reflectance-absorptancetransmittance (RAT) meter for routine experimental measurements of the actual absorptance of leaves. The RAT uses a red-green-blue (RGB) LED diode light source to measure absorptances at wavelengths suitable for use with PAM fluorometers and infrared gas analysers. Results using the RAT were compared to Abtλ spectra using a Taylor integrating sphere on bird’s nest fern (Asplenium nidus), banana, Doryanthes excelsa, Kalanchoe daigremontiana, and sugarcane. Parallel venation had no significant effect upon Abt465 in banana, Doryanthes, a Dendrobium orchid, pineapple, and sugarcane, but there was a slight difference in the case of the fern A. nidus. The average Abt465 (approximately 0.96) and Abt625 (approximately 0.89) were approximately 14% and 6% higher than the standard value (AbtF = 0.84). The PAR-range Abt400-700 was only approximately 5% higher than the standard value (approximately 0.88) based on averaged absorptance from the blue, green, and red light data and from where the RGB-diode was used as a ‘white’ light source. In some species, absorptances at blue and red wavelengths are quite different (e.g. water lily). Reflectance measurements of leaves using the RAT would also be useful for remote sensing studies., R. J. Ritchie, J. W. Runcie., and Obsahuje bibliografii
Light is critical in determining plant structure and functioning in dune ecosystems, which are characterised by high incident and reflected radiation. Light variations demand great plasticity of the photosynthetic apparatus. This study assessed the phenotypic plasticity of foredune species by analysing their light response and dark recovery curves measured under field conditions. We also addressed the question how coexisting species, structurally distinct, differed in their photochemical efficiency in response to short-term changes in light. Finally, we examined how the varying intensity of stressors operating along a dune gradient affected responses to light. The species differed in light use strategies but showed similar patterns of the dark recovery. Species differences in photochemistry varied seasonally, with species being winter specialists, summer specialist or generalists. Some aspects of their photochemistry varied significantly along the gradient. Unexpectedly, other traits did not vary as predicted. For example, changes in light efficiency of plants along the gradient were not consistent with assumed directional changes in the severity of stressors. The different light use strategies observed in coexisting species did not conform to the prediction that stressors constrain the range of possible functional designs in harsh environments. However, the species followed very similar patterns of post-illumination recovery, which suggests that evolutionary pressures might be acting to maintain similar recovery mechanisms. Our results indicated that dune gradients might be nondirectional, which determines unpredictable patterns of variation in leaf traits along the dune gradient. Seasonal differences in the relative performance may allow species to coexist where otherwise one species would exclude the other., R. Bermúdez, R. Retuerto., and Obsahuje bibliografii
The effect of ultraviolet B radiation (UV-B) on cellular ultrastructure, chlorophyll (Chl), carotenoids, and total phenolics of Acrostichum danaeifolium gametophytes was analyzed. The control group of spores was germinated under standard conditions, while the test group of spores was germinated with additional UV-B for 30 min every day for 34 d. The cell characteristics were preserved in gametophytes irradiated with UV-B, but the number of starch grains increased in the chloroplasts and the more developed grana organization in contrast to the chloroplasts of the control group. Chl a content decreased, while Chl b content increased in the gametophytes cultivated with UV-B for 34 d. Contents of lutein and zeaxanthin decreased and trans-β-carotene concentration was enhanced in the gametophytes irradiated with UV-B. The content of total phenolic compounds increased in the gametophytes cultivated with UV-B. Therefore our data suggest that the gametophytes of A. danaeifolium, a fern endemic to the mangrove biome, were sensitive to enhancement of UV-B radiation at the beginning of their development and they exhibited alterations in their ultrastructure, pigment contents, and protective mechanisms of the photosynthetic apparatus, when exposed to this radiation., A. M. Randi, M. C. A. Freitas, A. C. Rodrigues, M. Maraschin, M. A. Torres., and Obsahuje bibliografii
European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark., N. Maximová, Ľ. Slováková., and Obsahuje bibliografii