Winter wheat plants were grown in open top chambers either at 365 µmol mol-1 (AC) or at 700 µmol mol-1 (EC) air CO2 concentrations. The photosynthetic response of flag leaves at the beginning of flowering and on four vertical leaf levels at the beginning of grain filling were measured. Net photosynthetic rates (PN) were higher at both developmental phases in plants grown at EC coupled with larger leaf area and photosynthetic pigment contents. The widely accepted Farquhar net photosynthesis model was parameterised and tested using several observed data. After parameterisation the test results corresponded satisfactorily with observed values under several environmental conditions. and N. Harnos, Z. Tuba, K. Szente.
Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (PN). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to PN of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf PN with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate PN of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions. and Y. Tian, Y. Zhu, W. Cao.
Morpho-anatomical leaf traits and photosynthetic activity of two alpine herbs, Podophyllum hexandrum (shade-tolerant) and Rheum emodi (light-requiring), were studied under field (PAR>2 000 µmol m-2 s-1) and greenhouse (PAR 500 µmol m-2 s-1) conditions. Mesophyll thickness, surface area of mesophyll cells facing intercellular spaces (Smes), surface area of chloroplasts facing intercellular spaces (Sc), intercellular spaces of mesophyll cells (porosity), photon-saturated rate of photosynthesis per unit leaf area (PNmax), and ribulose-1,5-bisphosphate carboxylase/oxygenase activity decreased in the greenhouse with respect to the field and the decreases were significantly higher in R. emodi than in P. hexandrum. P. hexandrum had lower intercellular CO2 concentration than R. emodi under both irradiances. The differences in acclimation of the two alpine herbs to low irradiance were due to their highly unlikely changes in leaf morphology, anatomy, and PNmax which indicated that the difference in radiant energy requirement related to leaf acclimation had greater impact under low than high irradiance. and S. Pandey, N. Kumar, R. Kushwaha.
Employing the non-invasive techniques of infra-red gas analysis and pulse amplitude modulated chlorophyll fluorometry, we determined the partitioning of photosynthetic electrons between photosynthetic carbon reduction and other reductive processes resulting in the formation of active oxygen species (AOS) in intact green leaves. This we studied in plant species that are adapted to two different agro-climatic conditions, namely the warm plains (76°36'E, 9°32'N) and the cool mountains (1 600 m a.s.l.) in the south Indian state of Kerala. Ground frost and low temperature were more harmful to those species adapted to the warm plains than the ones adapted to the cool mountains. Exposure to low temperature decreased leaf photosynthetic carbon assimilation rates and quantum yield of photochemical activity in species naturally adapted to the warm plains. High irradiances further aggravated the harmful effects of low temperature stress possibly by overproducing AOS. This resulted in severe peroxidative damage as inferred by the accumulation of malondialdehyde (MDA) in the leaves. and B. Alam, J. Jacob.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (PN) and stomatal conductance (gs) of attached leaves decreased as leaf water potential (Ψw) declined from -0.3 to -2.9 MPa. Although gs decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (Ci) were observed as Ψw decreased to -1.8 MPa, but Ci increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 µmol m-2 s-1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from -0.3 to -2.9 MPa. A significant linear relationship between mean PN and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower. and W. Tezara, S. Driscoll, D. W. Lawlor.
Net photosynthetic rate (PN) in the mother leaves was higher in the drought tolerant (DT) clones of tea (Camellia sinensis) while liberation of the fixed 14C in light from the mother leaves was higher in the drought susceptible (DS) clones. The DT clones translocated more photosynthates to the crop shoots (three leaves and a bud) from the mother leaf than the DS clones. Concentrations of RuBP carboxylase (RuBPC) or oxygenase (RuBPO) had no relationship with the drought tolerant nature of tea clones but their ratio correlated with the same. DT tea clones had higher catalase activity that could scavenge the hydrogen peroxide formed in the photorespiratory pathway and thereby reduced photorespiration rate (PR). The ratio of RuBPC/RuBPO had a positive correlation with PN and catalase activity. Negative correlation between RuBPC/RuBPO and PR and between catalase activity and RuBPO activity was established. and P. R. Jeyaramraja ... [et al.].
The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 µmol m-2 s-1) on net photosynthetic rate (PN), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased PN, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons. and Y.-P. Guo ... [et al.].
Four grapevine cultivars, i.e. Cabernet Sauvignon (a member of the Western Europe cultivar group), Rizamat (a member of the East cultivar group), Red Double Taste (a hybridized cultivar from Vitis vinifera L. and V. labrusca L.), and 1103Paulsen (a hybridized rootstock), were treated by three severity orders of drought stress for 25 d. Then net photosynthetic rate (PN), maximal photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPS2) of photosystem 2, total electron transport rate (JT), and electron transport flows used in carboxylation (JC) and in oxygenation (JO) reactions catalysed by ribulose-1,5-bisphosphate carboxylase/oxygenase were determined. PN was determined again after re-watering for 2 d by gas exchange measurement. Along with the increase in severity of drought stress, PN, Fv/Fm, ΦPS2, JT, and JC in all four cultivars decreased. The range of decrease differed among cultivars. JO expressed various trends from cultivar to cultivar. In Rizamat that received slight and moderate drought stress, PN evidently decreased, but JO markedly increased, thus maintaining high values of JT and ΦPS2. Prior to the moderate drought stress, the Fv/Fm was high in Rizamat, indicating that the photodamage had not happened ahead of the moderate drought stress given. Under the severe drought stress, the photorespiration rate in Rizamat decreased by 70 %, and JT, ΦPS2, and Fv/Fm also dropped to very low values, i.e. the photodamage of photosynthetic apparatus has taken place. This suggested that the photorespiration has consumed the excessive assimilatory power and the photo-protective function of photorespiration is very important for Rizamat. When Cabernet Sauvignon grew under drought stress, its JO decreased in a small range, thus maintaining higher values of JC, JT, ΦPS2, and Fv/Fm; hence no serious photodamage occurred. Despite of the fact that PN of cv. Red Double Taste decreased markedly under the slight drought stress, JO still increased under the severe drought stress. This suggests that photorespiration is important in photoprotection under drought stress. JO in cv. 1103Paulsen markedly decreased under slight stress. Accordingly, PN, Fv/Fm, ΦPS2, JT, and JC decreased to extremely low values. Thus photorespiration effectively protects the photosynthetic apparatus from photo-damage under drought, assists in maintaining a relatively high ΦPS2, and helps PN to be rapidly recovered after re-watering. and X. Q. Guan ... [et al.].
The Amur Grape (Vitis amurensis Rupr.) cultivars ’shuangFeng’ and ‘ZuoShanyi’ were grown in shelter greenhouse under natural sunlight and subjected to drought. Sap flow rate, net photosynthetic rate (PN), and chlorophyll (Chl) fluorescence were measured on Amur Grape leaves subjected to different drought treatments. Significant decreases in P N were associated with increasing intercellular CO2 concentration (Ci), suggesting that the reduction in PN was caused by nonstomatal limitation. Analysis of OJIP transients according to the JIP-test protocol revealed that specific (per PSII reaction center) energy fluxes for light absorption, excitation energy trapping and electron transport have significantly changed. The appearance of a pronounced K-step and J-step in polyphasic rise of fluorescence transient suggested the oxygen-evolving complex and electron transport were inhibited. Drought stress has relatively little effect on the parameter maximal quantum yield of PSII photochemistry (Fv/Fm), but the performance index (PIABS) is more sensitive in different drought treatment. There are cultivar differences in the response of PSII activity to drought, the photosynthetic apparatus of ‘ZuoShanyi’ cultivar is more resistant to drought than that of ‘ShuangFeng’, and JIP-test could be a useful indicator for evaluation and selection to drought tolerance., Z. X. Wang ... [et al.]., and Obsahuje bibliografii
The recessive lethal character Luteus-Pa, expressed as a yellowing of leaves of young seedlings and followed by death approximately 60 d after emergence, presents a 3:1 segregation in crosses and/or selfpollinated plants. We evaluated quantitatively the fluorescence emission of chlorophyll (Chl), gas exchange, and chemical composition of normal and recessive homozygous cacao seedlings of the cross Pa 121×Pa 169. The characteristics of Chl fluorescence kinetics were studied in stages B2, B3, C, D, and E of leaf development, corresponding to plant ages of 9 to 12, 13 to 15, 16 to 20, 21 to 30, and >30 d, respectively. Gas exchanges were measured in mature leaves of both seedlings. In regular intervals of 3 d beginning at 33 d after emergence, the seedlings were separated into roots, stems, leaves, and cotyledons to determine the contents of saccharides (SAC) and free amino acids (FAA) and variation of the leaf Chl content. The Chl distribution in complexes of the photosynthetic apparatus was analysed by SDS-PAGE in mature leaves of both normal and recessive 32-d-old seedlings. There were variations in Chl fluorescence, gas exchanges and chemical composition of different parts of both types of seedlings. However, no significant differences were found in the Chl distribution through photosynthetic complexes of 32-d-old normal and recessive homozygous seedlings. After that period a decrease in the Chl concentration was observed in the recessive seedlings, and only minimum fluorescence (F0) was found. The F0 values were higher in the recessive seedlings than in the normal ones. The net photosynthetic rate of mature leaves was negative in agreement with low conductance, transpiration rate, and high internal CO2 concentration. These factors might have contributed to a depletion in SAC in different plant parts. Although F0 partially reflects the Chl concentration in leaf tissue, the increase in its value was probably due to a damage in reaction centres of photosystem 2. Therefore, the growth and development of recessive homozygous seedlings depended exclusively on cotyledon reserves, the depletion of which leads to death. and A.-A. F. de Almeida, R. R. Valle, P. Serrano Minar.