Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500-600 µmol m-2 s-1] than in leaves grown under full sunlight (a maximal PPFD of 1 000-1 200 µmol m-2 s-1) and shade (a maximal PPFD of 200-250 µmol m-2 s-1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant. and J. He, L. C. D. Teo
Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 μmol m-2 s-1) to 1 000 μmol m-2 s-1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (PNmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest PNmax among the three species. The photosynthetic induction period required to reach PNmax was 3-41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach PNmax was 2.5-6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 μmol m-2 s-1. The induction period was correlated with initial PN and stomatal conductance (gs) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial PN and gs increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in PN and gs at the same background PPFD. and M. Naramoto, Q. Han, Y. Kakubari.