The amphibious plant species of intermittent aquatic habitats thrive both submerged and emerged. In order to outline the adaptive characters of these two life forms photochemical efficiency of photosystem 2, leaf contents of chlorophyll (Chl) a and b, carotenoids (Car), anthocyanins (Ant), and UV-B absorbing compounds (UV-B abs), and root aerenchyma and arbuscular mycorrhizal (AM) colonisation were studied in Glyceria fluitans, Gratiola officinalis, Ranunculus lingua, Teucrium scordium, Sium latifolium, Sparganium emersum, and Veronica anagallis-aquatica. Water level fluctuations did not exert a severe effect on photon harvesting efficiency. Submerged specimens had higher contents of Car and Ant whereas higher contents of UV-B abs were found in emerged specimens indicating efficient protection against the harmful effects of solar radiation. Roots of all species studied had extensive aerenchyma and were colonised by AM fungi, which were significantly more abundant in emerged specimens. This is the first report on AM symbiosis in S. latifolium and S. emersum. and N. Šraj-Kržič ... [et al.].
The influence of viral infection caused by two different potyviruses, Potato virus Y (PVY) and Potato virus A (PVA) on plant metabolism and photosynthetic apparatus of Nicotiana tabacum L. cv. Samsun and cv. Petit Havana SR1 was studied. The main stress was focused on the activities of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK). The analysis of the presence of viral proteins, enzyme activities, and different photosynthetic parameters showed the time dependent progress of viral infection and NADP-ME and PEPC activities. PVY caused significant response, while PVA affected both tobacco cultivars only slightly. Viral infection, namely PVY, affected more negatively photosynthetic apparatus of cv. Petit Havana SR1 than cv. Samsun. and H. Ryšlavá ... [et al.].
In two hybrids of sorghum (Sorghum bicolor Moench.), C51 and C42, high nitrogen concentration (HN) increased net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) of well watered (HW) plants. Water stressing (LW plants) resulted in low PN, gs, and E in both hybrids, but the values were still higher in HN plants as compared to low nitrogen-grown (LN) plants. Intercellular CO2 concentration (Ci) increased in droughted plants. This increase was much higher in LN plants as compared to HN plants. Instantaneous water use efficiency was lower in LN plants as a consequence of a greater effect of water stress on photosynthesis. Leaf water potential was reduced by water stress in all treatments. Analysis of chlorophyll a fluorescence at room temperature showed that photosystem 2 (PS2) was rather tolerant to the water stress imposed. Water stress caused a slight decrease in the efficiency of excitation capture by open PS2 reaction centres (Fv/Fm). The in vivo quantum yield of PS2 photochemistry (ΦPS2) and the photochemical quenching coefficient (qP) were slightly reduced, while the nonphotochemical quenching coefficient (qN) was increased under the water stress. However, in hybrid C42 these characters were little or not affected by the water stress.
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m-2 s-1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids (Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (PN) for the both studied plant species was inhibited at 8 °C. PN of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport (ΦPS2) as a response to chilling and PFD were similar to PN. Measurements of ΦPS2/ΦCO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling. However, the high increment in ΦPS2/ΦCO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching (NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance. and J. Kościelniak, J. Biesaga-Kościelniak.
Seasonal changes in water relations, net photosynthetic rate (PN), and fluorescence of chlorophyll (Chl) a of two perennial C3 deciduous shrubs, Ipomoea carnea and Jatropha gossypifolia, growing in a thorn scrub in Venezuela were studied in order to establish the possible occurrence of photoinhibition during dry season and determine whether changes in photochemical activity of photosystem 2 (PS2) may explain variations of PN in these species. Leaf water potential (ψ) decreased from -0.2 to -2.1 MPa during drought in both species. The PN decreased with ψ in I. carnea and J. gossypifolia by 64 and 74 %, respectively. Carboxylation efficiency (CE) decreased by more than 50 and 70 % in I. carnea and J. gossypifolia, respectively. In I. carnea, relative stomatal limitation (Ls) increased by 17 % and mesophyll limitation (Lm) by 65 % during drought, while in J. gossypifolia Ls decreased by 27 % and Lm increased by 51 %. Drought caused a reduction in quantum yield of PS2 (ϕPS2) in both species. Drought affected the capacity of energy dissipation of leaves, judging from the changes in the photochemical (qP) and non-photochemical quenching (NPQ) coefficients. Photoinhibition during drought in I. carnea and J. gossypifolia was evidenced in the field by a drop in the maximum quantum yield of PS2 (Fv/Fm) below 0.8 and also by non-coordinated changes in ϕPS2 and quantum yield of non-photochemical excitation quenching (Yn). Total soluble protein content on an area basis increased with ψ but the ribulose-1,5-bisphosphate carboxylase/oxygenase content remained unchanged. A reduction of total Chl content with drought was observed. Hence in the species studied photoinhibition occurred, which imposed an important limitation on carbon assimilation during drought. and W. Tezara ... [et al.].
In tobacco leaves inoculated with tobacco mosaic virus (TMV), changes in chlorophyll (Chl) and carotenoid contents, parameters of slow Chl fluorescence kinetics, i.e. the maximum quantum yield of photosystem (PS2) photochemistry Fv/Fm, the effective quantum yield of photochemical energy conversion in PS2 Φ2, ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS2 Fv/F0, non-photochemical quenching (NPQ), and photochemical activities of isolated chloroplasts from systemically infected tobacco leaves were investigated. We compared two successive stages of infection, the first in the stage of vein clearing at 9th day post inoculation (dpi) and the second at 22nd dpi when two different regions, i.e. light- (LGI) or dark-green (DGI) islands in the infected leaf were apparent and symptoms were fully developed. These two different regions were measured separately. The Chl and carotenoid contents in infected leaves decreased with a progression of infection and were lowest in LGI in the second stage. Also the ratio of Chl a/b declined in similar manner. The maximum quantum yield of PS2 photochemistry Fv/Fm, was decreased in the following order: first stage, DGI, and LGI. The same is true for the ratio Fv/F0. The decrease of Φ2 in infected leaves declined as compared to their controls. On the contrary, NPQ increased in infected leaves, the highest value was found in the first infection stage. Photochemical activities of the whole electron transport chain in isolated chloroplasts dramatically declined with the progression of symptoms, the lowest value was in LGI. Similarly, but to a lesser extent, the activity of PS2 in isolated chloroplasts decreased in infected leaves. Generally, the most marked impairment of the photosynthetic apparatus was manifested in the LGI of infected leaves. and N. Wilhelmová ... [et al.].
Pachyrhizus ahipa (Wedd.) Parodi, originally from Latin America, is an agronomy interesting legume crop due to high seed protein content and saccharides-rich tuber root. Its capacity of adaptation to Mediterranean climate, where heat and water stress are frequently associated, is being tested. Two accessions of P. ahipa (AC 102 and AC 524) differing in field production were compared as concerns the effects of water stress and high temperature on photosynthetic performance. Membrane integrity was also evaluated through electrolyte leakage (injury index, I%), lipid composition, and ultrastructure observations. Short-term heat stress (40 °C) did not affect net photosynthetic rate (PN), stomatal conductance (gs), and most of fluorescence parameters in both accessions, what was consistent with low electrolyte leakage. However, photosynthetic capacity (Pmax) showed a significant reduction, AC 524 being more affected than AC 102. Relative water content (RWC) below 70 % caused a drastic decrease in PN and gs. Fluorescence parameters, Pmax, and I% were affected in the two accessions, which also presented a strong reduction (42 %) in total fatty acids (TFA). Contents of galactolipids were drastically reduced, and changes in their saturation also occurred, namely a decrease in linolenic acid (C18:3) percentage of monogalactosyl-diacylglycerol (MGDG) in both accessions. Thylakoid ultrastructure in AC 524 submitted to drought showed disorganisation of grana stacking. Mitochondria presented signs of injured cristae. When water-stressed plants were subjected to high temperature, photosynthesis and fluorescence parameters did not show significant additional changes in both accessions. The exposure of drought stressed plants to 40 °C further increased electrolyte leakage in AC 524, but not in AC 102. Chloroplasts, mitochondria, and plasmalemma showed an increased disorganisation. Vesicles appeared in the cytoplasm, which became electron-transparent, reflecting a strong reduction in the number of ribosomes. Hence AC 102 was less affected than AC 524 as regards some components of photosynthetic process, namely Pmax and membrane integrity. This could account for its better yield production previously observed in field grown plants. and M. C. Matos ... [et al.].
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as Chl content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub during dehydration and rehydration. The net photosynthetic rate (PN), maximum photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of non-cyclic electron transport of PS2, and Chl content decreased, but non-photochemical quenching of fluorescence and carotenoid content increased in stems with the increasing of drought stress. 6 d after re-hydration, new leaves budded from stems. In the re-watered plants, the chloroplast function was restored and Chl a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in plant triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. Thus R. soongorica plants are able to sustain drought stress through leaf abscission and keep part of Chl content in stems. and D. H. Xu ... [et al.].
Three-month-old plants of mulberry (Morus alba L. cv. Kanva-2) were subjected to a drought stress by withholding water supply. As the leaf water potential (ΨW) was dropping progressively with the severity of treatment and increasing stress duration, the values of leaf area, dry mass accumulation, total chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were declined. The photosystem 2 (PS2) photochemical efficiency significantly decreased only at a severe stress treatment. The intercellular CO2 concentration (Ci) remained unaltered during a mild stress, yet it increased under moderate and severe stresses. The Ci/gs ratio reflected the mesophyll efficiency during water stress. Rewatering of the plants led to an almost complete recovery of PN, E, and gs, indicating that a short-term stress brings about reversible effects only. and S. Ramanjulu ... [et al.].
High level of phosphoenolpyruvate carboxylase (PEPC) gene was stably inherited and transferred from the male parent, PEPC transgenic rice, into a female parent, japonica rice cv. 9516. Relative to the female parent, the produced JAAS45 pollen lines exhibited high PEPC activity (17-fold increase) and also higher photosynthetic rates (about 36 %-fold increase). The JAAS45 pollen lines were more tolerant to photoinhibition and to photo-oxidative stress. Furthermore, JAAS45 pollen lines, as well as their male parent, were tested to exhibit a limiting C4 cycle by feeding with exogenous C4 primary products such as oxaloacetate (OAA). Thus the PEPC gene and photosynthetic characteristics of PEPC transgenic rice could be stably transferred to the hybrid progenies, which might open a new breeding approach to the integration of conventional hybridization and biological technology. and L. Ling, B. J. Zhang, D. M. Jiao.